IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/vyid10.1007_s10878-020-00539-7.html
   My bibliography  Save this article

On weak Pareto optimality of nonatomic routing networks

Author

Listed:
  • Xujin Chen

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Zhuo Diao

    (Central University of Finance and Economics)

  • Xiaodong Hu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

This paper establishes several sufficient conditions for the weak Pareto optimality of Nash equilibria in nonatomic routing games on single- and multi-commodity networks, where a Nash equilibrium (NE) is weakly Pareto optimal (WPO) if under it no deviation of all players could make everybody better off. The results provide theoretical and technical bases for characterizing graphical structures for nonatomic routing games to admit WPO NEs. We prove that the NE of every nonatomic routing game on a single or multi-commodity network is WPO (regardless of the choices of nonnegative, continuous, nondecreasing latency functions on network links) if the network does not have two links x, y and three paths each of which goes from some origin to some destination such that the intersections of the three paths with $$\{x,y\}$${x,y} are $$\{x\},\{y\}$${x},{y} and $$\{x,y\}$${x,y}, respectively. This sufficient condition leads to an alternative proof of the recent result that the NE of every 2-commodity nonatomic routing game on any undirected cycle is WPO. We verify a general property satisfied by all feasible 2-commodity routings (not necessarily controlled by selfish players) on undirected cycles, which roughly says that no feasible routing can “dominate” another in some sense. The property is crucial for proving the weak Pareto optimality associated to the building blocks of undirected graphs on which all NEs w.r.t. two commodities are WPO.

Suggested Citation

  • Xujin Chen & Zhuo Diao & Xiaodong Hu, 0. "On weak Pareto optimality of nonatomic routing networks," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-19.
  • Handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00539-7
    DOI: 10.1007/s10878-020-00539-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00539-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00539-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Efficient graph topologies in network routing games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 115-125, May.
    2. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    3. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    4. Holzman, Ron & Law-yone (Lev-tov), Nissan, 2003. "Network structure and strong equilibrium in route selection games," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 193-205, October.
    5. Ron Holzman & Dov Monderer, 2015. "Strong equilibrium in network congestion games: increasing versus decreasing costs," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 647-666, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xujin Chen & Zhuo Diao & Xiaodong Hu, 2022. "On weak Pareto optimality of nonatomic routing networks," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1705-1723, October.
    2. Satoru Fujishige & Michel X. Goemans & Tobias Harks & Britta Peis & Rico Zenklusen, 2017. "Matroids Are Immune to Braess’ Paradox," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 745-761, August.
    3. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Efficient graph topologies in network routing games," Games and Economic Behavior, Elsevier, vol. 66(1), pages 115-125, May.
    4. Igal Milchtaich, 2021. "Internalization of social cost in congestion games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(2), pages 717-760, March.
    5. Epstein, Amir & Feldman, Michal & Mansour, Yishay, 2009. "Strong equilibrium in cost sharing connection games," Games and Economic Behavior, Elsevier, vol. 67(1), pages 51-68, September.
    6. T. Werth & H. Sperber & S. Krumke, 2014. "Computation of equilibria and the price of anarchy in bottleneck congestion games," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 22(4), pages 687-712, December.
    7. Kukushkin, Nikolai S., 2017. "Strong Nash equilibrium in games with common and complementary local utilities," Journal of Mathematical Economics, Elsevier, vol. 68(C), pages 1-12.
    8. Ron Holzman & Dov Monderer, 2015. "Strong equilibrium in network congestion games: increasing versus decreasing costs," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 647-666, August.
    9. Marco Scarsini & Tristan Tomala, 2012. "Repeated congestion games with bounded rationality," International Journal of Game Theory, Springer;Game Theory Society, vol. 41(3), pages 651-669, August.
    10. Yannai A. Gonczarowski & Moshe Tennenholtz, 2014. "Cascading to Equilibrium: Hydraulic Computation of Equilibria in Resource Selection Games," Discussion Paper Series dp673, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    11. Milchtaich, Igal, 2006. "Network topology and the efficiency of equilibrium," Games and Economic Behavior, Elsevier, vol. 57(2), pages 321-346, November.
    12. Leah Epstein & Sven O. Krumke & Asaf Levin & Heike Sperber, 2011. "Selfish bin coloring," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 531-548, November.
    13. Macault, Emilien & Scarsini, Marco & Tomala, Tristan, 2022. "Social learning in nonatomic routing games," Games and Economic Behavior, Elsevier, vol. 132(C), pages 221-233.
    14. Kuniavsky, Sergey & Smorodinsky, Rann, 2013. "Greediness and equilibrium in congestion games," Economics Letters, Elsevier, vol. 121(3), pages 499-503.
    15. Igal Milchtaich, 2015. "Network topology and equilibrium existence in weighted network congestion games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 515-541, August.
    16. Yannai A. Gonczarowski & Moshe Tennenholtz, 2014. "Noncooperative Market Allocation and the Formation of Downtown," Discussion Paper Series dp663, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    17. Andelman, Nir & Feldman, Michal & Mansour, Yishay, 2009. "Strong price of anarchy," Games and Economic Behavior, Elsevier, vol. 65(2), pages 289-317, March.
    18. Saurabh Amin & Patrick Jaillet & Haripriya Pulyassary & Manxi Wu, 2023. "Market Design for Dynamic Pricing and Pooling in Capacitated Networks," Papers 2307.03994, arXiv.org, revised Nov 2023.
    19. Arnold, Tone & Wooders, Myrna, 2002. "Dynamic Club Formation with Coordination," Economic Research Papers 269414, University of Warwick - Department of Economics.
    20. Milchtaich, Igal, 2009. "Weighted congestion games with separable preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 750-757, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v::y::i::d:10.1007_s10878-020-00539-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.