IDEAS home Printed from https://ideas.repec.org/a/eee/ecanpo/v76y2022icp15-30.html
   My bibliography  Save this article

Negative shocks in an age-structured bioeconomic model and how to deal with them

Author

Listed:
  • Ni, Yuanming
  • Steinshamn, Stein I.
  • Kvamsdal, Sturla F.

Abstract

We consider an age-structured bioeconomic model of a fishery where periodic negative shocks affect recruitment and somatic growth. The model is relevant for fish stocks that are subject to environmentally driven events such as diseases, match-mismatch relationships between plankton blooms and spawning, or recruitment failure. The nature of the optimal fishing strategy is pulse fishing. We vary the period and severity of the shocks to investigate how the optimal management scheme adapts and what factors trigger fishing pulses. Two principles largely govern fishing. The first is to harvest when the number of small cohorts in the stock is minimal. Small cohorts emerge from negative shocks to recruitment. The second principle is to fish when shocks to growth have the least impact on the weight distribution in the stock. Furthermore, we consider how net present value and total catches depend on the period of shocks and the average impact (impact times frequency). In the case of average impacts, we observe close to linear relationships that make reasonable generalizations of our results, for example to different impact levels, viable. The structure of predictable negative shocks in the model is a significant simplification but allows us to crystallize drivers of adaptations in the fishing strategy.

Suggested Citation

  • Ni, Yuanming & Steinshamn, Stein I. & Kvamsdal, Sturla F., 2022. "Negative shocks in an age-structured bioeconomic model and how to deal with them," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 15-30.
  • Handle: RePEc:eee:ecanpo:v:76:y:2022:i:c:p:15-30
    DOI: 10.1016/j.eap.2022.07.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0313592622001138
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eap.2022.07.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arne Stolbjerg Drud, 1994. "CONOPT—A Large-Scale GRG Code," INFORMS Journal on Computing, INFORMS, vol. 6(2), pages 207-216, May.
    2. Gourguet, S. & Thébaud, O. & Dichmont, C. & Jennings, S. & Little, L.R. & Pascoe, S. & Deng, R.A. & Doyen, L., 2014. "Risk versus economic performance in a mixed fishery," Ecological Economics, Elsevier, vol. 99(C), pages 110-120.
    3. R. Quentin Grafton & Luc Doyen & Christophe Béné & Edoardo Borgomeo & Kate Brooks & Long Chu & Graeme S. Cumming & John Dixon & Stephen Dovers & Dustin Garrick & Ariella Helfgott & Qiang Jiang & Pamel, 2019. "Realizing resilience for decision-making," Nature Sustainability, Nature, vol. 2(10), pages 907-913, October.
      • R. Quentin Grafton & Luc Doyen & Christophe Béné & Edoardo Borgomeo & Kate Brooks & Long Chu & Graeme S. Cumming & John Dixon & Stephen Dovers & Dustin Garrick & Ariella Helfgott & Qiang Jiang & Pamel, 2019. "Realizing resilience for decision-making," Post-Print hal-02733372, HAL.
    4. Rognvaldur Hannesson, 1975. "Fishery Dynamics: A North Atlantic Cod Fishery," Canadian Journal of Economics, Canadian Economics Association, vol. 8(2), pages 151-173, May.
    5. Christopher Costello & Stephen Polasky & Andrew Solow, 2001. "Renewable resource management with environmental prediction," Canadian Journal of Economics, Canadian Economics Association, vol. 34(1), pages 196-211, February.
    6. Kasperski, Stephen, 2016. "Optimal multispecies harvesting in the presence of a nuisance species," Marine Policy, Elsevier, vol. 64(C), pages 55-63.
    7. Ni, Yuanming & Sandal, Leif K. & Kvamsdal, Sturla F. & Poudel, Diwakar, 2019. "Greed is good: from super-harvest to recovery in a stochastic predator-prey system," Discussion Papers 2019/5, Norwegian School of Economics, Department of Business and Management Science.
    8. Quaas, Martin F. & Requate, Till & Ruckes, Kirsten & Skonhoft, Anders & Vestergaard, Niels & Voss, Rudi, 2013. "Incentives for optimal management of age-structured fish populations," Resource and Energy Economics, Elsevier, vol. 35(2), pages 113-134.
    9. Huang, Ling & Smith, Martin D., 2011. "Management of an annual fishery in the presence of ecological stress: The case of shrimp and hypoxia," Ecological Economics, Elsevier, vol. 70(4), pages 688-697, February.
    10. Lagarde, A. & Doyen, L. & Ahad-Cissé, A. & Caill-Milly, N. & Gourguet, S. & Pape, O. Le & Macher, C. & Morandeau, G. & Thébaud, O., 2018. "How Does MMEY Mitigate the Bioeconomic Effects of Climate Change for Mixed Fisheries," Ecological Economics, Elsevier, vol. 154(C), pages 317-332.
    11. Tahvonen, Olli & Quaas, Martin F. & Voss, Rüdiger, 2018. "Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 659-676.
    12. Ling Huang & Martin D. Smith, 2014. "The Dynamic Efficiency Costs of Common-Pool Resource Exploitation," American Economic Review, American Economic Association, vol. 104(12), pages 4071-4103, December.
    13. Kvamsdal, Sturla F. & Maroto, José M. & Morán, Manuel & Sandal, Leif K., 2020. "Bioeconomic modeling of seasonal fisheries," European Journal of Operational Research, Elsevier, vol. 281(2), pages 332-340.
    14. Anders Skonhoft & Niels Vestergaard & Martin Quaas, 2012. "Optimal Harvest in an Age Structured Model with Different Fishing Selectivity," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(4), pages 525-544, April.
    15. Trond Bjørndal & Daniel Gordon & Veijo Kaitala & Marko Lindroos, 2004. "International Management Strategies for a Straddling Fish Stock: A Bio-Economic Simulation Model of the Norwegian Spring-Spawning Herring Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 29(4), pages 435-457, December.
    16. Martin F. Quaas & Olli Tahvonen, 2019. "Strategic Harvesting of Age-Structured Populations," Marine Resource Economics, University of Chicago Press, vol. 34(4), pages 291-309.
    17. Luc Doyen, 2014. "EcoViability for ecosystem based fisheries management," Post-Print hal-02274521, HAL.
    18. José-María Da Rocha & María-Jose Gutiérrez & Luis Antelo, 2013. "Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 139-154, January.
    19. Richard M. Adams & Stephen Polasky, 1998. "The Value of El Niño Forecasts in the Management of Salmon: A Stochastic Dynamic Assessment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(4), pages 765-777.
    20. Martin D. Smith, 2012. "The New Fisheries Economics: Incentives Across Many Margins," Annual Review of Resource Economics, Annual Reviews, vol. 4(1), pages 379-402, August.
    21. Holzer, Jorge & Olson, Lars J., 2021. "Precautionary buffers and stochastic dependence in environmental policy," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    22. Diwakar Poudel & Leif K. Sandal & Sturla F. Kvamsdal, 2015. "Stochastically Induced Critical Depensation and Risk of Stock Collapse," Marine Resource Economics, University of Chicago Press, vol. 30(3), pages 297-313.
    23. Ni, Yuanming & Sandal, Leif Kristoffer, 2019. "Seasonality matters: A multi-season, multi-state dynamic optimization in fisheries," European Journal of Operational Research, Elsevier, vol. 275(2), pages 648-658.
    24. Olli Tahvonen & Martin Quaas & Jörn Schmidt & Rudi Voss, 2013. "Optimal Harvesting of an Age-Structured Schooling Fishery," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 21-39, January.
    25. Sturla F. Kvamsdal, 2022. "Optimal Management of a Renewable Resource Under Multiple Regimes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(3), pages 481-499, March.
    26. Anna M. Birkenbach & Andreea L. Cojocaru & Frank Asche & Atle G. Guttormsen & Martin D. Smith, 2020. "Seasonal Harvest Patterns in Multispecies Fisheries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(3), pages 631-655, March.
    27. Luc Doyen, 2018. "Mathematics for Scenarios of Biodiversity and Ecosystem Services," Post-Print hal-03118045, HAL.
    28. Tahvonen, Olli, 2009. "Economics of harvesting age-structured fish populations," Journal of Environmental Economics and Management, Elsevier, vol. 58(3), pages 281-299, November.
    29. Li, Chuan-Zhong & Crépin, Anne-Sophie & Folke,Carl, 2018. "The Economics of Resilience," International Review of Environmental and Resource Economics, now publishers, vol. 11(4), pages 309-353, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grafton, R. Quentin & Squires, Dale & Steinshamn, Stein Ivar, 2023. "Towards resilience-based management of marine capture fisheries," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 231-238.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Quaas, Martin F. & Requate, Till & Ruckes, Kirsten & Skonhoft, Anders & Vestergaard, Niels & Voss, Rudi, 2013. "Incentives for optimal management of age-structured fish populations," Resource and Energy Economics, Elsevier, vol. 35(2), pages 113-134.
    2. Da Rocha, José María & García-Cutrín, Javier & Gutiérrez Huerta, María José & Touza, Julia, 2015. "Reconciling yield stability with international fisheries agencies precautionary preferences: the role of non constant discount factors in age structured models," DFAEII Working Papers 1988-088X, University of the Basque Country - Department of Foundations of Economic Analysis II.
    3. Cuilleret, Mathieu & Doyen, Luc & Gomes, Hélène & Blanchard, Fabian, 2022. "Resilience management for coastal fisheries facing with global changes and uncertainties," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 634-656.
    4. Kvamsdal, Sturla F. & Maroto, José M. & Morán, Manuel & Sandal, Leif K., 2020. "Bioeconomic modeling of seasonal fisheries," European Journal of Operational Research, Elsevier, vol. 281(2), pages 332-340.
    5. Helgesen, Irmelin Slettemoen & Skonhoft, Anders & Eide, Arne, 2018. "Maximum Yield Fishing and Optimal Fleet Composition. A Stage Structured Model Analysis With an Example From the Norwegian North-East Arctic Cod Fishery," Ecological Economics, Elsevier, vol. 153(C), pages 204-217.
    6. José-María Da Rocha & María-Jose Gutiérrez & Luis Antelo, 2013. "Selectivity, Pulse Fishing and Endogenous Lifespan in Beverton-Holt Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 54(1), pages 139-154, January.
    7. Tahvonen, Olli & Quaas, Martin F. & Voss, Rüdiger, 2018. "Harvesting selectivity and stochastic recruitment in economic models of age-structured fisheries," Journal of Environmental Economics and Management, Elsevier, vol. 92(C), pages 659-676.
    8. Hutniczak, Barbara, 2015. "Modeling heterogeneous fleet in an ecosystem based management context," Ecological Economics, Elsevier, vol. 120(C), pages 203-214.
    9. Toumasatos, Evangelos & Sandal, Leif Kristoffer & Steinshamn, Stein Ivar, 2022. "Keep it in house or sell it abroad? A framework to evaluate fairness," European Journal of Operational Research, Elsevier, vol. 297(2), pages 709-728.
    10. José-María Da-Rocha & Rosa Mato-Amboage, 2016. "On the Benefits of Including Age-Structure in Harvest Control Rules," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 619-641, August.
    11. Tromeur, Eric & Doyen, Luc & Tarizzo, Violaine & Little, L. Richard & Jennings, Sarah & Thébaud, Olivier, 2021. "Risk averse policies foster bio-economic sustainability in mixed fisheries," Ecological Economics, Elsevier, vol. 190(C).
    12. Ni, Yuanming & Steinshamn, Stein I., 2016. "Optimal fishing mortalities with age-structured bioeconomic model - a case of NEA mackerel," Discussion Papers 2016/9, Norwegian School of Economics, Department of Business and Management Science.
    13. Chris J. Kennedy & Edward B. Barbier, 2013. "Renewable resource management with environmental prediction: the importance of structural specification," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 46(3), pages 1110-1122, August.
    14. Michele Baggio, 2016. "Optimal Fishery Management with Regime Shifts: An Assessment of Harvesting Strategies," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(3), pages 465-492, July.
    15. Kvamsdal, Sturla F. & Maroto, José M. & Morán, Manuel & Sandal, Leif K., 2016. "A Bellman approach to periodic optimization problems," Discussion Papers 2016/19, Norwegian School of Economics, Department of Business and Management Science.
    16. Behringer, Stefan & Upmann, Thorsten, 2017. "Harvesting a Remote Renewable Resource," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168250, Verein für Socialpolitik / German Economic Association.
    17. Helene Gomes & Luc Doyen & Fabian Blanchard & Adrien Lagarde, 2021. "Viable and ecosystem-based management for tropical small-scale fisheries facing climate change," Bordeaux Economics Working Papers 2021-24, Bordeaux School of Economics (BSE).
    18. Anne Borge Johannesen & Jon Olaf Olaussen & Anders Skonhoft, 2019. "Livestock and Carnivores: Economic and Ecological Interactions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 295-317, September.
    19. Skonhoft, Anders & Gong, Peichen, 2014. "Wild salmon fishing: Harvesting the old or young?," Resource and Energy Economics, Elsevier, vol. 36(2), pages 417-435.
    20. Anna M. Birkenbach & Andreea L. Cojocaru & Frank Asche & Atle G. Guttormsen & Martin D. Smith, 2020. "Seasonal Harvest Patterns in Multispecies Fisheries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 75(3), pages 631-655, March.

    More about this item

    Keywords

    Negative shocks; Resilience; Pulse fishing; Optimal response; Age-structured; Bioeconomic;
    All these keywords.

    JEL classification:

    • Q22 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Fishery
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecanpo:v:76:y:2022:i:c:p:15-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/economic-analysis-and-policy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.