IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v91y2025i1d10.1007_s10898-024-01434-9.html
   My bibliography  Save this article

Global optimization: a machine learning approach

Author

Listed:
  • Dimitris Bertsimas

    (Massachusetts Institute of Technology)

  • Georgios Margaritis

    (Massachusetts Institute of Technology)

Abstract

Many approaches for addressing global optimization problems typically rely on relaxations of nonlinear constraints over specific mathematical primitives. This is restricting in applications with constraints that are implicit or consist of more general primitives. Trying to address such limitations, Bertsimas and Ozturk (2023) proposed OCTHaGOn as a way of solving very general global optimization problems by approximating the nonlinear constraints using hyperplane-based decision-trees and then using those trees to construct a unified MIO approximation of the original problem. We provide extensions to this approach, by (i) approximating the original problem using other MIO-representable ML models besides decision trees, such as gradient boosted trees, multi layer perceptrons and suport vector machines (ii) proposing adaptive sampling procedures for more accurate ML-based constraint approximations, (iii) utilizing robust optimization to account for the uncertainty of the sample-dependent training of the ML models, (iv) leveraging a family of relaxations to address the infeasibilities of the final MIO approximation. We then test the enhanced framework in 81 global optimization instances. We show improvements in solution feasibility and optimality in the majority of instances. We also compare against BARON, showing improved optimality gaps and solution times in more than 9 instances.

Suggested Citation

  • Dimitris Bertsimas & Georgios Margaritis, 2025. "Global optimization: a machine learning approach," Journal of Global Optimization, Springer, vol. 91(1), pages 1-37, January.
  • Handle: RePEc:spr:jglopt:v:91:y:2025:i:1:d:10.1007_s10898-024-01434-9
    DOI: 10.1007/s10898-024-01434-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-024-01434-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-024-01434-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:1:d:10.1007_s10898-024-01434-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.