IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i1d10.1007_s10898-020-00973-1.html
   My bibliography  Save this article

Learning chordal extensions

Author

Listed:
  • Defeng Liu

    (Polytechnique Montréal)

  • Andrea Lodi

    (Polytechnique Montréal)

  • Mathieu Tanneau

    (Polytechnique Montréal)

Abstract

A highly influential ingredient of many techniques designed to exploit sparsity in numerical optimization is the so-called chordal extension of a graph representation of the optimization problem. The definitive relation between chordal extension and the performance of the optimization algorithm that uses the extension is not a mathematically understood task. For this reason, we follow the current research trend of looking at Combinatorial Optimization tasks by using a Machine Learning lens, and we devise a framework for learning elimination rules yielding high-quality chordal extensions. As a first building block of the learning framework, we propose an imitation learning scheme that mimics the elimination ordering provided by an expert rule. Results show that our imitation learning approach is effective in learning two classical elimination rules: the minimum degree and minimum fill-in heuristics, using simple Graph Neural Network models with only a handful of parameters. Moreover, the learned policies display remarkable generalization performance, across both graphs of larger size, and graphs from a different distribution.

Suggested Citation

  • Defeng Liu & Andrea Lodi & Mathieu Tanneau, 2021. "Learning chordal extensions," Journal of Global Optimization, Springer, vol. 81(1), pages 3-22, September.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:1:d:10.1007_s10898-020-00973-1
    DOI: 10.1007/s10898-020-00973-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00973-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00973-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry M. Markowitz, 1957. "The Elimination form of the Inverse and its Application to Linear Programming," Management Science, INFORMS, vol. 3(3), pages 255-269, April.
    2. David Bergman & Carlos H. Cardonha & Andre A. Cire & Arvind U. Raghunathan, 2019. "On the Minimum Chordal Completion Polytope," Operations Research, INFORMS, vol. 67(2), pages 532-547, March.
    3. Robert E. Bixby, 2002. "Solving Real-World Linear Programs: A Decade and More of Progress," Operations Research, INFORMS, vol. 50(1), pages 3-15, February.
    4. Edward Rothberg & Bruce Hendrickson, 1998. "Sparse Matrix Ordering Methods for Interior Point Linear Programming," INFORMS Journal on Computing, INFORMS, vol. 10(1), pages 107-113, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Péter Tar & Bálint Stágel & István Maros, 2017. "Parallel search paths for the simplex algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 967-984, December.
    2. Thiago Serra & Ryan J. O’Neil, 2020. "MIPLIBing: Seamless Benchmarking of Mathematical Optimization Problems and Metadata Extensions," SN Operations Research Forum, Springer, vol. 1(3), pages 1-6, September.
    3. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    4. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    5. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    6. Duque, Daniel & Lozano, Leonardo & Medaglia, Andrés L., 2015. "An exact method for the biobjective shortest path problem for large-scale road networks," European Journal of Operational Research, Elsevier, vol. 242(3), pages 788-797.
    7. Daniele Silva & Marta Velazco & Aurelio Oliveira, 2017. "Influence of matrix reordering on the performance of iterative methods for solving linear systems arising from interior point methods for linear programming," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 97-112, February.
    8. Harry M. Markowitz, 2004. "Trains of Thought," Chapters, in: Michael Szenberg & Lall Ramrattan (ed.), Reflections of Eminent Economists, chapter 17, Edward Elgar Publishing.
    9. Castro, Jordi, 2006. "Minimum-distance controlled perturbation methods for large-scale tabular data protection," European Journal of Operational Research, Elsevier, vol. 171(1), pages 39-52, May.
    10. LOUTE, Etienne, 2003. "Gaussian elimination as a computational paradigm," LIDAM Discussion Papers CORE 2003059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Zygmunt Stanula & Marek Wieruszewski & Adam Zydroń & Krzysztof Adamowicz, 2023. "Optimizing Forest-Biomass-Distribution Logistics from a Multi-Level Perspective—Review," Energies, MDPI, vol. 16(24), pages 1-17, December.
    12. Joseph Elble & Nikolaos Sahinidis, 2012. "Scaling linear optimization problems prior to application of the simplex method," Computational Optimization and Applications, Springer, vol. 52(2), pages 345-371, June.
    13. Harry M. Markowitz, 2002. "Efficient Portfolios, Sparse Matrices, and Entities: A Retrospective," Operations Research, INFORMS, vol. 50(1), pages 154-160, February.
    14. Gass, Saul I., 1997. "The Washington operations research connection: the rest of the story," Socio-Economic Planning Sciences, Elsevier, vol. 31(4), pages 245-255, December.
    15. Andrey M. Lizyayev, 2009. "Stochastic Dominance: Convexity and Some Efficiency Tests," Tinbergen Institute Discussion Papers 09-112/2, Tinbergen Institute, revised 05 Jan 2010.
    16. Timo Berthold & Jakob Witzig, 2021. "Conflict Analysis for MINLP," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 421-435, May.
    17. David R. Morrison & Jason J. Sauppe & Sheldon H. Jacobson, 2013. "A Network Simplex Algorithm for the Equal Flow Problem on a Generalized Network," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 2-12, February.
    18. Leonardo Lozano & Daniel Duque & Andrés L. Medaglia, 2016. "An Exact Algorithm for the Elementary Shortest Path Problem with Resource Constraints," Transportation Science, INFORMS, vol. 50(1), pages 348-357, February.
    19. Suresh P. Sethi & Sushil Gupta & Vipin K. Agrawal & Vijay K. Agrawal, 2022. "Nobel laureates’ contributions to and impacts on operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4283-4303, December.
    20. Miles Lubin & J. Hall & Cosmin Petra & Mihai Anitescu, 2013. "Parallel distributed-memory simplex for large-scale stochastic LP problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 571-596, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:1:d:10.1007_s10898-020-00973-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.