IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v67y2019i2p532-547.html
   My bibliography  Save this article

On the Minimum Chordal Completion Polytope

Author

Listed:
  • David Bergman

    (Operations and Information Management, University of Connecticut, Storrs, Connecticut 06260;)

  • Carlos H. Cardonha

    (IBM Research, São Paulo 04007-900, Brazil;)

  • Andre A. Cire

    (Department of Management, University of Toronto Scarborough and Rotman School of Management, Toronto, Ontario M1E-1A4, Canada;)

  • Arvind U. Raghunathan

    (Mitsubishi Electric Research Labs, Cambridge, Massachusetts 02139)

Abstract

A graph is chordal if every cycle with at least four edges contains a chord —that is, an edge connecting two nonconsecutive vertices of the cycle. Several classical applications in sparse linear systems, database management, computer vision, and semidefinite programming can be reduced to finding the minimum number of edges to add to a graph so that it becomes chordal, known as the minimum chordal completion problem (MCCP). We propose a new formulation for the MCCP that does not rely on finding perfect elimination orderings of the graph, as has been considered in previous work. We introduce several families of facet-defining inequalities for cycle subgraphs and investigate the underlying separation problems, showing that some key inequalities are NP-hard to separate. We also identify conditions through which facets and inequalities associated with the polytope of a certain graph can be adapted in order to become facet defining for some of its subgraphs or supergraphs. Numerical studies combining heuristic separation methods and lazy-constraint generation indicate that our approach substantially outperforms existing methods for the MCCP.

Suggested Citation

  • David Bergman & Carlos H. Cardonha & Andre A. Cire & Arvind U. Raghunathan, 2019. "On the Minimum Chordal Completion Polytope," Operations Research, INFORMS, vol. 67(2), pages 532-547, March.
  • Handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:532-547
    DOI: 10.1287/opre.2018.1783
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/opre.2018.1783
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2018.1783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Defeng Liu & Andrea Lodi & Mathieu Tanneau, 2021. "Learning chordal extensions," Journal of Global Optimization, Springer, vol. 81(1), pages 3-22, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisangela Martins de Sá & Ivan Contreras & Jean-François Cordeau & Ricardo Saraiva de Camargo & Gilberto de Miranda, 2015. "The Hub Line Location Problem," Transportation Science, INFORMS, vol. 49(3), pages 500-518, August.
    2. Yossiri Adulyasak & Jean-François Cordeau & Raf Jans, 2015. "Benders Decomposition for Production Routing Under Demand Uncertainty," Operations Research, INFORMS, vol. 63(4), pages 851-867, August.
    3. Jérémy Omer & Michael Poss, 2021. "Identifying relatively irreducible infeasible subsystems of linear inequalities," Annals of Operations Research, Springer, vol. 304(1), pages 361-379, September.
    4. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    5. William B. Haskell & Wenjie Huang & Huifu Xu, 2018. "Preference Elicitation and Robust Optimization with Multi-Attribute Quasi-Concave Choice Functions," Papers 1805.06632, arXiv.org.
    6. Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
    7. Avci, Mualla Gonca & Avci, Mustafa & Battarra, Maria & Erdoğan, Güneş, 2024. "The wildfire suppression problem with multiple types of resources," European Journal of Operational Research, Elsevier, vol. 316(2), pages 488-502.
    8. Dell’Amico, Mauro & Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2019. "Mathematical models and decomposition methods for the multiple knapsack problem," European Journal of Operational Research, Elsevier, vol. 274(3), pages 886-899.
    9. Belieres, Simon & Hewitt, Mike & Jozefowiez, Nicolas & Semet, Frédéric & Van Woensel, Tom, 2020. "A Benders decomposition-based approach for logistics service network design," European Journal of Operational Research, Elsevier, vol. 286(2), pages 523-537.
    10. Mancini, Simona & Ciavotta, Michele & Meloni, Carlo, 2021. "The Multiple Multidimensional Knapsack with Family-Split Penalties," European Journal of Operational Research, Elsevier, vol. 289(3), pages 987-998.
    11. Dursun, Pınar & Taşkın, Z. Caner & Altınel, İ. Kuban, 2019. "The determination of optimal treatment plans for Volumetric Modulated Arc Therapy (VMAT)," European Journal of Operational Research, Elsevier, vol. 272(1), pages 372-388.
    12. Weckenborg, Christian & Schumacher, Patrick & Thies, Christian & Spengler, Thomas S., 2024. "Flexibility in manufacturing system design: A review of recent approaches from Operations Research," European Journal of Operational Research, Elsevier, vol. 315(2), pages 413-441.
    13. Schulz, Arne & Pfeiffer, Christian, 2024. "Using fixed paths to improve branch-and-cut algorithms for precedence-constrained routing problems," European Journal of Operational Research, Elsevier, vol. 312(2), pages 456-472.
    14. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    15. Michels, Adalberto Sato & Lopes, Thiago Cantos & Magatão, Leandro, 2020. "An exact method with decomposition techniques and combinatorial Benders’ cuts for the type-2 multi-manned assembly line balancing problem," Operations Research Perspectives, Elsevier, vol. 7(C).
    16. Moira MacNeil & Merve Bodur, 2022. "Integer Programming, Constraint Programming, and Hybrid Decomposition Approaches to Discretizable Distance Geometry Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 297-314, January.
    17. Matteo Fischetti & Domenico Salvagnin, 2010. "Pruning Moves," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 108-119, February.
    18. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    19. Senna, Fernando & Coelho, Leandro C. & Morabito, Reinaldo & Munari, Pedro, 2024. "An exact method for a last-mile delivery routing problem with multiple deliverymen," European Journal of Operational Research, Elsevier, vol. 317(2), pages 550-562.
    20. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:67:y:2019:i:2:p:532-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.