IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v275y2019i1p53-66.html
   My bibliography  Save this article

Adaptive Large Neighborhood Search on the Graphics Processing Unit

Author

Listed:
  • Bach, Lukas
  • Hasle, Geir
  • Schulz, Christian

Abstract

For computationally hard discrete optimization problems, we rely on increasing computing power to reduce the solution time. In recent years the computational capacity of the Graphics Processing Unit (GPU) in ordinary desktop computers has increased significantly compared to the Central Processing Unit (CPU). It is interesting to explore how this alternative source of computing power can be utilized. Most investigations of GPU-based methods in discrete optimization use swarm intelligence or evolutionary methods. One of the best single-solution metaheuristics for discrete optimization is Adaptive Large Neighborhood Search (ALNS). GPU parallelization of ALNS has not been reported in the literature. We gain knowledge on the difficulties of developing a data parallel version of the ALNS, and investigate the efficiency of ALNS on the GPU. To this end, we develop an ALNS for the much studied Distance Constrained Capacitated Vehicle Routing Problem (DCVRP). We compare the performance of our GPU-based ALNS with a state-of-the-art CPU implementation using standard DCVRP benchmarks. While it proved hard to implement certain commonly used mechanisms efficiently on the GPU, experimental results show that our GPU-based ALNS yields highly competitive performance.

Suggested Citation

  • Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
  • Handle: RePEc:eee:ejores:v:275:y:2019:i:1:p:53-66
    DOI: 10.1016/j.ejor.2018.11.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718309767
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.11.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Pisinger & Stefan Ropke, 2010. "Large Neighborhood Search," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 399-419, Springer.
    2. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    3. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "A unified solution framework for multi-attribute vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 234(3), pages 658-673.
    4. Boschetti, Marco Antonio & Maniezzo, Vittorio & Strappaveccia, Francesco, 2017. "Route relaxations on GPU for vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 258(2), pages 456-466.
    5. Robert E. Bixby, 2002. "Solving Real-World Linear Programs: A Decade and More of Progress," Operations Research, INFORMS, vol. 50(1), pages 3-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. TURKEŠ, Renata & SÖRENSEN, Kenneth & HVATTUM, Lars Magnus & BARRENA, Eva & CHENTLI, Hayet & COELHO, Leandro & DAYARIAN, Iman & GRIMAULT, Axel & GULLHAVE, Anders & IRIS, Çagatay & KESKIN, Merve & KIEFE, 2019. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," Working Papers 2019002, University of Antwerp, Faculty of Business and Economics.
    2. Turkeš, Renata & Sörensen, Kenneth & Hvattum, Lars Magnus, 2021. "Meta-analysis of metaheuristics: Quantifying the effect of adaptiveness in adaptive large neighborhood search," European Journal of Operational Research, Elsevier, vol. 292(2), pages 423-442.
    3. Özarık, Sami Serkan & Lurkin, Virginie & Veelenturf, Lucas P. & Van Woensel, Tom & Laporte, Gilbert, 2023. "An Adaptive Large Neighborhood Search heuristic for last-mile deliveries under stochastic customer availability and multiple visits," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 194-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    2. Rincon-Garcia, Nicolas & Waterson, Ben & Cherrett, Tom J. & Salazar-Arrieta, Fernando, 2020. "A metaheuristic for the time-dependent vehicle routing problem considering driving hours regulations – An application in city logistics," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 429-446.
    3. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2023. "The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 255(C).
    4. Michael Drexl, 2021. "On the one-to-one pickup-and-delivery problem with time windows and trailers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 1115-1162, September.
    5. Maximilian Schiffer & Grit Walther, 2018. "An Adaptive Large Neighborhood Search for the Location-routing Problem with Intra-route Facilities," Transportation Science, INFORMS, vol. 52(2), pages 331-352, March.
    6. Soriano, Adria & Gansterer, Margaretha & Hartl, Richard F., 2022. "Reprint of: The multi-depot vehicle routing problem with profit fairness," International Journal of Production Economics, Elsevier, vol. 250(C).
    7. Timo Gschwind & Michael Drexl, 2019. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Transportation Science, INFORMS, vol. 53(2), pages 480-491, March.
    8. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    9. Timo Hintsch, 2019. "Large Multiple Neighborhood Search for the Soft-Clustered Vehicle-Routing Problem," Working Papers 1904, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    10. Ulrike Ritzinger & Jakob Puchinger & Richard Hartl, 2016. "Dynamic programming based metaheuristics for the dial-a-ride problem," Annals of Operations Research, Springer, vol. 236(2), pages 341-358, January.
    11. Hatzenbühler, Jonas & Jenelius, Erik & Gidófalvi, Gyözö & Cats, Oded, 2023. "Modular vehicle routing for combined passenger and freight transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    12. Timo Gschwind & Michael Drexl, 2016. "Adaptive Large Neighborhood Search with a Constant-Time Feasibility Test for the Dial-a-Ride Problem," Working Papers 1624, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    13. Daniela Guericke & Leena Suhl, 2017. "The home health care problem with working regulations," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(4), pages 977-1010, October.
    14. Guido, Rosita & Groccia, Maria Carmela & Conforti, Domenico, 2018. "An efficient matheuristic for offline patient-to-bed assignment problems," European Journal of Operational Research, Elsevier, vol. 268(2), pages 486-503.
    15. Marco Antonio Boschetti & Vittorio Maniezzo, 2022. "Matheuristics: using mathematics for heuristic design," 4OR, Springer, vol. 20(2), pages 173-208, June.
    16. Ohad Eisenhandler & Michal Tzur, 2019. "The Humanitarian Pickup and Distribution Problem," Operations Research, INFORMS, vol. 67(1), pages 10-32, January.
    17. Lee, Jongsung & Kim, Byung-In & Johnson, Andrew L. & Lee, Kiho, 2014. "The nuclear medicine production and delivery problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 461-472.
    18. Ulrike Ritzinger & Jakob Puchinger & Richard F. Hartl, 2016. "Dynamic programming based metaheuristics for the dial-a-ride problem," Annals of Operations Research, Springer, vol. 236(2), pages 341-358, January.
    19. Liu, Yiming & Roberto, Baldacci & Zhou, Jianwen & Yu, Yang & Zhang, Yu & Sun, Wei, 2023. "Efficient feasibility checks and an adaptive large neighborhood search algorithm for the time-dependent green vehicle routing problem with time windows," European Journal of Operational Research, Elsevier, vol. 310(1), pages 133-155.
    20. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2013. "Heuristics for multi-attribute vehicle routing problems: A survey and synthesis," European Journal of Operational Research, Elsevier, vol. 231(1), pages 1-21.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:275:y:2019:i:1:p:53-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.