IDEAS home Printed from https://ideas.repec.org/a/eee/matcom/v44y1998i6p545-558.html
   My bibliography  Save this article

A distributed memory parallel algorithm for the efficient computation of sensitivities of differential-algebraic systems

Author

Listed:
  • Keeping, B.R.
  • Pantelides, C.C.

Abstract

An efficient algorithm for the evaluation of the parametric sensitivities for mixed systems of differential and algebraic equations (DAEs) on computers involving multiple processors operating in parallel is presented. The algorithm derives its efficiency by decoupling the integration of the sensitivity equations from that of the original DAE system, and by allowing tasks associated with the evaluation of sensitivities at multiple time points to overlap instead of being carried out in sequence. Numerical experiments demonstrating the efficiency of the proposed algorithm with systems of more than 850 DAEs and 45 parameters are presented. In all the cases studied, the simultaneous integration of the original DAEs and their sensitivity equations is carried out in less than 10% more time than that of the original DAEs alone.

Suggested Citation

  • Keeping, B.R. & Pantelides, C.C., 1998. "A distributed memory parallel algorithm for the efficient computation of sensitivities of differential-algebraic systems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 44(6), pages 545-558.
  • Handle: RePEc:eee:matcom:v:44:y:1998:i:6:p:545-558
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378475497000992
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harry M. Markowitz, 1957. "The Elimination form of the Inverse and its Application to Linear Programming," Management Science, INFORMS, vol. 3(3), pages 255-269, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harry M. Markowitz, 2004. "Trains of Thought," Chapters, in: Michael Szenberg & Lall Ramrattan (ed.), Reflections of Eminent Economists, chapter 17, Edward Elgar Publishing.
    2. Defeng Liu & Andrea Lodi & Mathieu Tanneau, 2021. "Learning chordal extensions," Journal of Global Optimization, Springer, vol. 81(1), pages 3-22, September.
    3. Gass, Saul I., 1997. "The Washington operations research connection: the rest of the story," Socio-Economic Planning Sciences, Elsevier, vol. 31(4), pages 245-255, December.
    4. Milan Dražić & Rade Lazović & Vera Kovačević-Vujčić, 2015. "Sparsity preserving preconditioners for linear systems in interior-point methods," Computational Optimization and Applications, Springer, vol. 61(3), pages 557-570, July.
    5. I-Lin Wang & Ellis L. Johnson & Joel S. Sokol, 2005. "A Multiple Pairs Shortest Path Algorithm," Transportation Science, INFORMS, vol. 39(4), pages 465-476, November.
    6. Tobias Achterberg & Robert E. Bixby & Zonghao Gu & Edward Rothberg & Dieter Weninger, 2020. "Presolve Reductions in Mixed Integer Programming," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 473-506, April.
    7. Chung-Han Hsieh, 2022. "On Solving Robust Log-Optimal Portfolio: A Supporting Hyperplane Approximation Approach," Papers 2202.03858, arXiv.org.
    8. LOUTE, Etienne, 2003. "Gaussian elimination as a computational paradigm," LIDAM Discussion Papers CORE 2003059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Harry M. Markowitz, 2002. "Efficient Portfolios, Sparse Matrices, and Entities: A Retrospective," Operations Research, INFORMS, vol. 50(1), pages 154-160, February.
    10. Suresh P. Sethi & Sushil Gupta & Vipin K. Agrawal & Vijay K. Agrawal, 2022. "Nobel laureates’ contributions to and impacts on operations management," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4283-4303, December.
    11. Miles Lubin & J. Hall & Cosmin Petra & Mihai Anitescu, 2013. "Parallel distributed-memory simplex for large-scale stochastic LP problems," Computational Optimization and Applications, Springer, vol. 55(3), pages 571-596, July.
    12. Dobrzyński, Michał & Plata, Jagoda, 2010. "Fill-ins number reducing direct solver designed for FIT-type matrix," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 80(8), pages 1684-1693.
    13. Porfirio Suñagua & Aurelio R. L. Oliveira, 2017. "A new approach for finding a basis for the splitting preconditioner for linear systems from interior point methods," Computational Optimization and Applications, Springer, vol. 67(1), pages 111-127, May.
    14. Van Ha, Pham & Kompas, Tom, 2016. "Solving intertemporal CGE models in parallel using a singly bordered block diagonal ordering technique," Economic Modelling, Elsevier, vol. 52(PA), pages 3-12.
    15. Péter Tar & Bálint Stágel & István Maros, 2017. "Parallel search paths for the simplex algorithm," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(4), pages 967-984, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:matcom:v:44:y:1998:i:6:p:545-558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/mathematics-and-computers-in-simulation/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.