IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v78y2020i1d10.1007_s10898-020-00899-8.html
   My bibliography  Save this article

A difference-of-convex approach for split feasibility with applications to matrix factorizations and outlier detection

Author

Listed:
  • Chen Chen

    (South China Normal University)

  • Ting Kei Pong

    (The Hong Kong Polytechnic University)

  • Lulin Tan

    (South China Normal University)

  • Liaoyuan Zeng

    (The Hong Kong Polytechnic University)

Abstract

The split feasibility problem is to find an element in the intersection of a closed set C and the linear preimage of another closed set D, assuming the projections onto C and D are easy to compute. This class of problems arises naturally in many contemporary applications such as compressed sensing. While the sets C and D are typically assumed to be convex in the literature, in this paper, we allow both sets to be possibly nonconvex. We observe that, in this setting, the split feasibility problem can be formulated as an optimization problem with a difference-of-convex objective so that standard majorization-minimization type algorithms can be applied. Here we focus on the nonmonotone proximal gradient algorithm with majorization studied in Liu et al. (Math Program, 2019. https://doi.org/10.1007/s10107-018-1327-8 , Appendix A). We show that, when this algorithm is applied to a split feasibility problem, the sequence generated clusters at a stationary point of the problem under mild assumptions. We also study local convergence property of the sequence under suitable assumptions on the closed sets involved. Finally, we perform numerical experiments to illustrate the efficiency of our approach on solving split feasibility problems that arise in completely positive matrix factorization, (uniformly) sparse matrix factorization, and outlier detection.

Suggested Citation

  • Chen Chen & Ting Kei Pong & Lulin Tan & Liaoyuan Zeng, 2020. "A difference-of-convex approach for split feasibility with applications to matrix factorizations and outlier detection," Journal of Global Optimization, Springer, vol. 78(1), pages 107-136, September.
  • Handle: RePEc:spr:jglopt:v:78:y:2020:i:1:d:10.1007_s10898-020-00899-8
    DOI: 10.1007/s10898-020-00899-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00899-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00899-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    2. Tianxiang Liu & Ting Kei Pong & Akiko Takeda, 2019. "A refined convergence analysis of $$\hbox {pDCA}_{e}$$ pDCA e with applications to simultaneous sparse recovery and outlier detection," Computational Optimization and Applications, Springer, vol. 73(1), pages 69-100, May.
    3. Carl Eckart & Gale Young, 1936. "The approximation of one matrix by another of lower rank," Psychometrika, Springer;The Psychometric Society, vol. 1(3), pages 211-218, September.
    4. Jason Xu & Eric C. Chi & Meng Yang & Kenneth Lange, 2018. "A majorization–minimization algorithm for split feasibility problems," Computational Optimization and Applications, Springer, vol. 71(3), pages 795-828, December.
    5. Peter Dickinson & Luuk Gijben, 2014. "On the computational complexity of membership problems for the completely positive cone and its dual," Computational Optimization and Applications, Springer, vol. 57(2), pages 403-415, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhijian Lai & Akiko Yoshise, 2022. "Completely positive factorization by a Riemannian smoothing method," Computational Optimization and Applications, Springer, vol. 83(3), pages 933-966, December.
    2. Xianfu Wang & Ziyuan Wang, 2022. "Malitsky-Tam forward-reflected-backward splitting method for nonconvex minimization problems," Computational Optimization and Applications, Springer, vol. 82(2), pages 441-463, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yitian Qian & Shaohua Pan & Shujun Bi, 2023. "A matrix nonconvex relaxation approach to unconstrained binary polynomial programs," Computational Optimization and Applications, Springer, vol. 84(3), pages 875-919, April.
    2. Zhuoxuan Jiang & Xinyuan Zhao & Chao Ding, 2021. "A proximal DC approach for quadratic assignment problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 825-851, April.
    3. Tao Pham Dinh & Van Ngai Huynh & Hoai An Le Thi & Vinh Thanh Ho, 2022. "Alternating DC algorithm for partial DC programming problems," Journal of Global Optimization, Springer, vol. 82(4), pages 897-928, April.
    4. Sewell, Daniel K., 2018. "Visualizing data through curvilinear representations of matrices," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 255-270.
    5. Jinyan Fan & Jiawang Nie & Anwa Zhou, 2019. "Completely Positive Binary Tensors," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 1087-1100, August.
    6. Jushan Bai & Serena Ng, 2020. "Simpler Proofs for Approximate Factor Models of Large Dimensions," Papers 2008.00254, arXiv.org.
    7. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    8. Alfredo García-Hiernaux & José Casals & Miguel Jerez, 2012. "Estimating the system order by subspace methods," Computational Statistics, Springer, vol. 27(3), pages 411-425, September.
    9. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    10. Mitzi Cubilla‐Montilla & Ana‐Belén Nieto‐Librero & Ma Purificación Galindo‐Villardón & Ma Purificación Vicente Galindo & Isabel‐María Garcia‐Sanchez, 2019. "Are cultural values sufficient to improve stakeholder engagement human and labour rights issues?," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 26(4), pages 938-955, July.
    11. Jos Berge & Henk Kiers, 1993. "An alternating least squares method for the weighted approximation of a symmetric matrix," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 115-118, March.
    12. Shimeng Huang & Henry Wolkowicz, 2018. "Low-rank matrix completion using nuclear norm minimization and facial reduction," Journal of Global Optimization, Springer, vol. 72(1), pages 5-26, September.
    13. Francesco Rinaldi & Damiano Zeffiro, 2023. "Avoiding bad steps in Frank-Wolfe variants," Computational Optimization and Applications, Springer, vol. 84(1), pages 225-264, January.
    14. Antti J. Tanskanen & Jani Lukkarinen & Kari Vatanen, 2016. "Random selection of factors preserves the correlation structure in a linear factor model to a high degree," Papers 1604.05896, arXiv.org, revised Dec 2018.
    15. Jin-Xing Liu & Yong Xu & Chun-Hou Zheng & Yi Wang & Jing-Yu Yang, 2012. "Characteristic Gene Selection via Weighting Principal Components by Singular Values," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-10, July.
    16. Kargin, V. & Onatski, A., 2008. "Curve forecasting by functional autoregression," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2508-2526, November.
    17. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    18. W. Gibson, 1962. "On the least-squares orthogonalization of an oblique transformation," Psychometrika, Springer;The Psychometric Society, vol. 27(2), pages 193-195, June.
    19. Kely D. V. Villacorta & Paulo R. Oliveira & Antoine Soubeyran, 2014. "A Trust-Region Method for Unconstrained Multiobjective Problems with Applications in Satisficing Processes," Journal of Optimization Theory and Applications, Springer, vol. 160(3), pages 865-889, March.
    20. Bo Jiang & Tianyi Lin & Shiqian Ma & Shuzhong Zhang, 2019. "Structured nonconvex and nonsmooth optimization: algorithms and iteration complexity analysis," Computational Optimization and Applications, Springer, vol. 72(1), pages 115-157, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:78:y:2020:i:1:d:10.1007_s10898-020-00899-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.