IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v74y2019i1d10.1007_s10898-019-00748-3.html
   My bibliography  Save this article

Minimum variance allocation among constrained intervals

Author

Listed:
  • Hsin-Min Sun

    (National University of Tainan)

  • Ruey-Lin Sheu

    (National Cheng Kung University)

Abstract

We propose a weighted minimum variance allocation model, denoted by WMVA, which distributes an amount of a divisible resource as fairly as possible while satisfying all demand intervals. We show that the problem WMVA has a unique optimal solution and it can be characterized by the uniform distribution property (UDP in short). Based on the UDP property, we develop an efficient algorithm. Theoretically, our algorithm has a worst-case $$O(n^2)$$ O ( n 2 ) complexity, but we prove that, subject to slight conditions, the worst case cannot happen on a 64-bit computer when the problem dimension is greater than 129. We provide extensive simulation results to support the argument and it explains why, in practice, our algorithm runs significantly faster than most existing algorithms, including many O(n) algorithms.

Suggested Citation

  • Hsin-Min Sun & Ruey-Lin Sheu, 2019. "Minimum variance allocation among constrained intervals," Journal of Global Optimization, Springer, vol. 74(1), pages 21-44, May.
  • Handle: RePEc:spr:jglopt:v:74:y:2019:i:1:d:10.1007_s10898-019-00748-3
    DOI: 10.1007/s10898-019-00748-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00748-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00748-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. C. Kiwiel, 2008. "Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 445-458, March.
    2. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    3. Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
    4. K. C. Kiwiel, 2007. "On Linear-Time Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 549-554, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    2. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    3. Torrealba, E.M.R. & Silva, J.G. & Matioli, L.C. & Kolossoski, O. & Santos, P.S.M., 2022. "Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 46-59.
    4. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    5. Bueno, L.F. & Haeser, G. & Kolossoski, O., 2024. "On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1217-1222.
    6. Chernonog, Tatyana & Goldberg, Noam, 2018. "On the multi-product newsvendor with bounded demand distributions," International Journal of Production Economics, Elsevier, vol. 203(C), pages 38-47.
    7. Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
    8. Marco E. T. Gerards & Johann L. Hurink, 2016. "Robust Peak-Shaving for a Neighborhood with Electric Vehicles," Energies, MDPI, vol. 9(8), pages 1-16, July.
    9. ten Eikelder, S.C.M. & van Amerongen, J.H.M., 2023. "Resource allocation problems with expensive function evaluations," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1170-1185.
    10. Meijiao Liu & Yong-Jin Liu, 2017. "Fast algorithm for singly linearly constrained quadratic programs with box-like constraints," Computational Optimization and Applications, Springer, vol. 66(2), pages 309-326, March.
    11. Zeyang Wu & Kameng Nip & Qie He, 2021. "A New Combinatorial Algorithm for Separable Convex Resource Allocation with Nested Bound Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1197-1212, July.
    12. Jacobovic, Royi & Kella, Offer, 2020. "Minimizing a stochastic convex function subject to stochastic constraints and some applications," Stochastic Processes and their Applications, Elsevier, vol. 130(11), pages 7004-7018.
    13. Sathaye, Nakul & Madanat, Samer, 2012. "A bottom-up optimal pavement resurfacing solution approach for large-scale networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(4), pages 520-528.
    14. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    15. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.
    16. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    17. Itay Gurvich & Ward Whitt, 2009. "Scheduling Flexible Servers with Convex Delay Costs in Many-Server Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 237-253, June.
    18. Akiyoshi Shioura & Natalia V. Shakhlevich & Vitaly A. Strusevich & Bernhard Primas, 2018. "Models and algorithms for energy-efficient scheduling with immediate start of jobs," Journal of Scheduling, Springer, vol. 21(5), pages 505-516, October.
    19. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    20. Friedrich, Ulf & Münnich, Ralf & de Vries, Sven & Wagner, Matthias, 2015. "Fast integer-valued algorithms for optimal allocations under constraints in stratified sampling," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:74:y:2019:i:1:d:10.1007_s10898-019-00748-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.