A penalty algorithm for solving convex separable knapsack problems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.amc.2019.124855
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- K. C. Kiwiel, 2008. "Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 445-458, March.
- Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 1995. "A Branch and Bound Algorithm for Integer Quadratic Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 109-116, February.
- K. C. Kiwiel, 2007. "On Linear-Time Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 549-554, September.
- Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
- Gabriel R. Bitran & Arnoldo C. Hax, 1981. "Disaggregation and Resource Allocation Using Convex Knapsack Problems with Bounded Variables," Management Science, INFORMS, vol. 27(4), pages 431-441, April.
- Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
- Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Benita, Francisco & Nasini, Stefano & Nessah, Rabia, 2022. "A cooperative bargaining framework for decentralized portfolio optimization," Journal of Mathematical Economics, Elsevier, vol. 103(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- K. C. Kiwiel, 2008. "Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 445-458, March.
- Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
- Hsin-Min Sun & Ruey-Lin Sheu, 2019. "Minimum variance allocation among constrained intervals," Journal of Global Optimization, Springer, vol. 74(1), pages 21-44, May.
- Torrealba, E.M.R. & Silva, J.G. & Matioli, L.C. & Kolossoski, O. & Santos, P.S.M., 2022. "Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 46-59.
- Lee, Zu-Hsu & Deng, Shiming & Lin, Beixin & Yang, James G.S., 2010. "Decision model and analysis for investment interest expense deduction and allocation," European Journal of Operational Research, Elsevier, vol. 200(1), pages 268-280, January.
- Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
- Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
- ten Eikelder, S.C.M. & van Amerongen, J.H.M., 2023. "Resource allocation problems with expensive function evaluations," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1170-1185.
- Bueno, L.F. & Haeser, G. & Kolossoski, O., 2024. "On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1217-1222.
- Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 2003. "A specially structured nonlinear integer resource allocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 770-792, October.
- Zhang, Bin & Hua, Zhongsheng, 2008. "A unified method for a class of convex separable nonlinear knapsack problems," European Journal of Operational Research, Elsevier, vol. 191(1), pages 1-6, November.
- Meijiao Liu & Yong-Jin Liu, 2017. "Fast algorithm for singly linearly constrained quadratic programs with box-like constraints," Computational Optimization and Applications, Springer, vol. 66(2), pages 309-326, March.
- David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
- Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
- Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
- Zhang, Jianzhong & Xu, Chengxian, 2010. "Inverse optimization for linearly constrained convex separable programming problems," European Journal of Operational Research, Elsevier, vol. 200(3), pages 671-679, February.
- Mohammadivojdan, Roshanak & Geunes, Joseph, 2018. "The newsvendor problem with capacitated suppliers and quantity discounts," European Journal of Operational Research, Elsevier, vol. 271(1), pages 109-119.
- AgralI, Semra & Geunes, Joseph, 2009. "Solving knapsack problems with S-curve return functions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 605-615, March.
- Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.
- Aboolian, Robert & Berman, Oded & Krass, Dmitry, 2021. "Optimizing facility location and design," European Journal of Operational Research, Elsevier, vol. 289(1), pages 31-43.
More about this item
Keywords
Separable knapsack problem; Exterior projections; Gradient method; Bregman distances;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:387:y:2020:i:c:s0096300319308471. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.