On Linear-Time Algorithms for the Continuous Quadratic Knapsack Problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s10957-007-9259-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 1995. "A Branch and Bound Algorithm for Integer Quadratic Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 109-116, February.
- N. Maculan & C.P. Santiago & E.M. Macambira & M.H.C. Jardim, 2003. "An O(n) Algorithm for Projecting a Vector on the Intersection of a Hyperplane and a Box in Rn," Journal of Optimization Theory and Applications, Springer, vol. 117(3), pages 553-574, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
- Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
- Meijiao Liu & Yong-Jin Liu, 2017. "Fast algorithm for singly linearly constrained quadratic programs with box-like constraints," Computational Optimization and Applications, Springer, vol. 66(2), pages 309-326, March.
- Cassioli, A. & Di Lorenzo, D. & Sciandrone, M., 2013. "On the convergence of inexact block coordinate descent methods for constrained optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 274-281.
- Hsin-Min Sun & Ruey-Lin Sheu, 2019. "Minimum variance allocation among constrained intervals," Journal of Global Optimization, Springer, vol. 74(1), pages 21-44, May.
- K. C. Kiwiel, 2008. "Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 445-458, March.
- Amir Beck & Nadav Hallak, 2016. "On the Minimization Over Sparse Symmetric Sets: Projections, Optimality Conditions, and Algorithms," Mathematics of Operations Research, INFORMS, vol. 41(1), pages 196-223, February.
- P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
- Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
- Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
- K. C. Kiwiel, 2008. "Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 445-458, March.
- Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 2003. "A specially structured nonlinear integer resource allocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 770-792, October.
- Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
- David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
- Syam, Siddhartha S., 1998. "A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals," European Journal of Operational Research, Elsevier, vol. 108(1), pages 196-207, July.
- Zhang, Bin & Hua, Zhongsheng, 2008. "A unified method for a class of convex separable nonlinear knapsack problems," European Journal of Operational Research, Elsevier, vol. 191(1), pages 1-6, November.
- Le Thi, Hoai An & Ta, Anh Son & Pham Dinh, Tao, 2018. "An efficient DCA based algorithm for power control in large scale wireless networks," Applied Mathematics and Computation, Elsevier, vol. 318(C), pages 215-226.
- Lee, Zu-Hsu & Deng, Shiming & Lin, Beixin & Yang, James G.S., 2010. "Decision model and analysis for investment interest expense deduction and allocation," European Journal of Operational Research, Elsevier, vol. 200(1), pages 268-280, January.
- Hunting, Marcel & Faigle, Ulrich & Kern, Walter, 2001. "A Lagrangian relaxation approach to the edge-weighted clique problem," European Journal of Operational Research, Elsevier, vol. 131(1), pages 119-131, May.
- Shiyun Wang, 2020. "The Geometric Properties of a Class of Nonsymmetric Cones," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(3), pages 989-1002, September.
- Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
- Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
- Aviad Aberdam & Amir Beck, 2022. "An Accelerated Coordinate Gradient Descent Algorithm for Non-separable Composite Optimization," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 219-246, June.
More about this item
Keywords
Nonlinear programming; Convex programming; Quadratic programming; Separable programming; Singly-constrained quadratic program;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:134:y:2007:i:3:d:10.1007_s10957-007-9259-0. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.