IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i3p1217-1222.html
   My bibliography  Save this article

On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”

Author

Listed:
  • Bueno, L.F.
  • Haeser, G.
  • Kolossoski, O.

Abstract

In the paper Torrealba et al. (2021) an augmented Lagrangian algorithm was proposed for resource allocation problems with the intriguing characteristic that instead of solving the box-constrained augmented Lagrangian subproblem, they propose projecting the solution of the unconstrained subproblem onto such box. A global convergence result for the quadratic case was provided, however, this is somewhat counterintuitive, as in usual augmented Lagrangian theory, this strategy can fail in solving the augmented Lagrangian subproblems. In this note we investigate further this algorithm and we show that the proposed method may indeed fail when the Hessian of the quadratic is not a multiple of the identity. In the paper, it is not clear enough that two different projections are being used: one for obtaining their convergence results and other in their implementation. However, despite the lack of theoretical convergence, their strategy works remarkably well in some classes of problems; thus, we propose a hybrid method which uses their idea as a starting point heuristics, switching to a standard augmented Lagrangian method under certain conditions. Our contribution consists in presenting an efficient way of determining when the heuristics is failing to improve the KKT residual of the problem, suggesting that the heuristic procedure should be abandoned. Numerical results are provided showing that this strategy is successful in accelerating the standard method.

Suggested Citation

  • Bueno, L.F. & Haeser, G. & Kolossoski, O., 2024. "On the paper “Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem”," European Journal of Operational Research, Elsevier, vol. 313(3), pages 1217-1222.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:1217-1222
    DOI: 10.1016/j.ejor.2023.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722172300824X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    2. Lotito, Pablo A., 2006. "Issues in the implementation of the DSD algorithm for the traffic assignment problem," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1577-1587, December.
    3. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    4. Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
    5. Duan Li & Xiaoling Sun, 2006. "Nonlinear Integer Programming," International Series in Operations Research and Management Science, Springer, number 978-0-387-32995-6, December.
    6. Frangioni, Antonio & Gorgone, Enrico, 2013. "A library for continuous convex separable quadratic knapsack problems," European Journal of Operational Research, Elsevier, vol. 229(1), pages 37-40.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Torrealba, E.M.R. & Silva, J.G. & Matioli, L.C. & Kolossoski, O. & Santos, P.S.M., 2022. "Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 46-59.
    2. Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    3. Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
    4. ten Eikelder, S.C.M. & van Amerongen, J.H.M., 2023. "Resource allocation problems with expensive function evaluations," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1170-1185.
    5. Jungho Park & Hadi El-Amine & Nevin Mutlu, 2021. "An Exact Algorithm for Large-Scale Continuous Nonlinear Resource Allocation Problems with Minimax Regret Objectives," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1213-1228, July.
    6. Kouhei Harada, 2021. "A Feasibility-Ensured Lagrangian Heuristic for General Decomposable Problems," SN Operations Research Forum, Springer, vol. 2(4), pages 1-26, December.
    7. Sathaye, Nakul & Madanat, Samer, 2011. "A bottom-up solution for the multi-facility optimal pavement resurfacing problem," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1004-1017, August.
    8. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    9. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    10. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    11. Chernonog, Tatyana & Goldberg, Noam, 2018. "On the multi-product newsvendor with bounded demand distributions," International Journal of Production Economics, Elsevier, vol. 203(C), pages 38-47.
    12. Thijs Klauw & Marco E. T. Gerards & Johann L. Hurink, 2017. "Resource allocation problems in decentralized energy management," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 39(3), pages 749-773, July.
    13. Jamie Fravel & Robert Hildebrand & Laurel Travis, 2024. "Continuous Equality Knapsack with Probit-Style Objectives," Journal of Optimization Theory and Applications, Springer, vol. 202(3), pages 1060-1076, September.
    14. Federico Della Croce & Dominique Quadri, 2012. "Improving an exact approach for solving separable integer quadratic knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 23(1), pages 21-28, January.
    15. Hsin-Min Sun & Ruey-Lin Sheu, 2019. "Minimum variance allocation among constrained intervals," Journal of Global Optimization, Springer, vol. 74(1), pages 21-44, May.
    16. Marco E. T. Gerards & Johann L. Hurink, 2016. "Robust Peak-Shaving for a Neighborhood with Electric Vehicles," Energies, MDPI, vol. 9(8), pages 1-16, July.
    17. Dori Hulst & Dick Hertog & Wim Nuijten, 2017. "Robust shift generation in workforce planning," Computational Management Science, Springer, vol. 14(1), pages 115-134, January.
    18. Zeyang Wu & Kameng Nip & Qie He, 2021. "A New Combinatorial Algorithm for Separable Convex Resource Allocation with Nested Bound Constraints," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1197-1212, July.
    19. D. Quadri & E. Soutif & P. Tolla, 2009. "Exact solution method to solve large scale integer quadratic multidimensional knapsack problems," Journal of Combinatorial Optimization, Springer, vol. 17(2), pages 157-167, February.
    20. Weiyang Ding & Michael K. Ng & Wenxing Zhang, 2024. "A generalized alternating direction implicit method for consensus optimization: application to distributed sparse logistic regression," Journal of Global Optimization, Springer, vol. 90(3), pages 727-753, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:3:p:1217-1222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.