IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v136y2008i3d10.1007_s10957-007-9317-7.html
   My bibliography  Save this article

Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem

Author

Listed:
  • K. C. Kiwiel

    (Systems Research Institute)

Abstract

We study several variations of the Bitran–Hax variable fixing method for the continuous quadratic knapsack problem. We close the gaps in the convergence analysis of several existing methods and provide more efficient versions. We report encouraging computational results for large-scale problems.

Suggested Citation

  • K. C. Kiwiel, 2008. "Variable Fixing Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 445-458, March.
  • Handle: RePEc:spr:joptap:v:136:y:2008:i:3:d:10.1007_s10957-007-9317-7
    DOI: 10.1007/s10957-007-9317-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9317-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9317-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 1995. "A Branch and Bound Algorithm for Integer Quadratic Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 7(1), pages 109-116, February.
    2. Steven Cosares & Dorit S. Hochbaum, 1994. "Strongly Polynomial Algorithms for the Quadratic Transportation Problem with a Fixed Number of Sources," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 94-111, February.
    3. K. C. Kiwiel, 2007. "On Linear-Time Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 549-554, September.
    4. Soren S. Nielsen & Stavros A. Zenios, 1992. "Massively Parallel Algorithms for Singly Constrained Convex Programs," INFORMS Journal on Computing, INFORMS, vol. 4(2), pages 166-181, May.
    5. Gabriel R. Bitran & Arnoldo C. Hax, 1981. "Disaggregation and Resource Allocation Using Convex Knapsack Problems with Bounded Variables," Management Science, INFORMS, vol. 27(4), pages 431-441, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meijiao Liu & Yong-Jin Liu, 2017. "Fast algorithm for singly linearly constrained quadratic programs with box-like constraints," Computational Optimization and Applications, Springer, vol. 66(2), pages 309-326, March.
    2. Hsin-Min Sun & Ruey-Lin Sheu, 2019. "Minimum variance allocation among constrained intervals," Journal of Global Optimization, Springer, vol. 74(1), pages 21-44, May.
    3. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    4. Torrealba, E.M.R. & Silva, J.G. & Matioli, L.C. & Kolossoski, O. & Santos, P.S.M., 2022. "Augmented Lagrangian algorithms for solving the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 46-59.
    5. Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patriksson, Michael, 2008. "A survey on the continuous nonlinear resource allocation problem," European Journal of Operational Research, Elsevier, vol. 185(1), pages 1-46, February.
    2. Hoto, R.S.V. & Matioli, L.C. & Santos, P.S.M., 2020. "A penalty algorithm for solving convex separable knapsack problems," Applied Mathematics and Computation, Elsevier, vol. 387(C).
    3. Hezhi Luo & Xianye Zhang & Huixian Wu & Weiqiang Xu, 2023. "Effective algorithms for separable nonconvex quadratic programming with one quadratic and box constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 199-240, September.
    4. Lee, Zu-Hsu & Deng, Shiming & Lin, Beixin & Yang, James G.S., 2010. "Decision model and analysis for investment interest expense deduction and allocation," European Journal of Operational Research, Elsevier, vol. 200(1), pages 268-280, January.
    5. De Waegenaere, A.M.B. & Wielhouwer, J.L., 2001. "A Partial Ranking Algorithm for Resource Allocation Problems," Other publications TiSEM 8b2e0185-36f9-43df-8a3d-d, Tilburg University, School of Economics and Management.
    6. Patriksson, Michael & Strömberg, Christoffer, 2015. "Algorithms for the continuous nonlinear resource allocation problem—New implementations and numerical studies," European Journal of Operational Research, Elsevier, vol. 243(3), pages 703-722.
    7. Bretthauer, Kurt M. & Shetty, Bala, 2002. "The nonlinear knapsack problem - algorithms and applications," European Journal of Operational Research, Elsevier, vol. 138(3), pages 459-472, May.
    8. Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 2003. "A specially structured nonlinear integer resource allocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 770-792, October.
    9. Meijiao Liu & Yong-Jin Liu, 2017. "Fast algorithm for singly linearly constrained quadratic programs with box-like constraints," Computational Optimization and Applications, Springer, vol. 66(2), pages 309-326, March.
    10. Syam, Siddhartha S., 1998. "A dual ascent method for the portfolio selection problem with multiple constraints and linked proposals," European Journal of Operational Research, Elsevier, vol. 108(1), pages 196-207, July.
    11. Bretthauer, Kurt M. & Ross, Anthony & Shetty, Bala, 1999. "Nonlinear integer programming for optimal allocation in stratified sampling," European Journal of Operational Research, Elsevier, vol. 116(3), pages 667-680, August.
    12. Zhang, Bin & Hua, Zhongsheng, 2008. "A unified method for a class of convex separable nonlinear knapsack problems," European Journal of Operational Research, Elsevier, vol. 191(1), pages 1-6, November.
    13. K. C. Kiwiel, 2007. "On Linear-Time Algorithms for the Continuous Quadratic Knapsack Problem," Journal of Optimization Theory and Applications, Springer, vol. 134(3), pages 549-554, September.
    14. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    15. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    16. Zhang, Jianzhong & Xu, Chengxian, 2010. "Inverse optimization for linearly constrained convex separable programming problems," European Journal of Operational Research, Elsevier, vol. 200(3), pages 671-679, February.
    17. Mohammadivojdan, Roshanak & Geunes, Joseph, 2018. "The newsvendor problem with capacitated suppliers and quantity discounts," European Journal of Operational Research, Elsevier, vol. 271(1), pages 109-119.
    18. Walter, Rico & Boysen, Nils & Scholl, Armin, 2013. "The discrete forward–reserve problem – Allocating space, selecting products, and area sizing in forward order picking," European Journal of Operational Research, Elsevier, vol. 229(3), pages 585-594.
    19. AgralI, Semra & Geunes, Joseph, 2009. "Solving knapsack problems with S-curve return functions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 605-615, March.
    20. Chunli Liu & Jianjun Gao, 2015. "A polynomial case of convex integer quadratic programming problems with box integer constraints," Journal of Global Optimization, Springer, vol. 62(4), pages 661-674, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:136:y:2008:i:3:d:10.1007_s10957-007-9317-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.