The Douglas–Rachford algorithm for a hyperplane and a doubleton
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-019-00744-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Joël Benoist, 2015. "The Douglas–Rachford algorithm for the case of the sphere and the line," Journal of Global Optimization, Springer, vol. 63(2), pages 363-380, October.
- Minh N. Dao & Hung M. Phan, 2018. "Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems," Journal of Global Optimization, Springer, vol. 72(3), pages 443-474, November.
- Heinz H. Bauschke & Minh N. Dao & Dominikus Noll & Hung M. Phan, 2016. "On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces," Journal of Global Optimization, Springer, vol. 65(2), pages 329-349, June.
- Francisco J. Aragón Artacho & Jonathan M. Borwein & Matthew K. Tam, 2016. "Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem," Journal of Global Optimization, Springer, vol. 65(2), pages 309-327, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francisco J. Aragón Artacho & Rubén Campoy & Matthew K. Tam, 2020. "The Douglas–Rachford algorithm for convex and nonconvex feasibility problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 201-240, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Minh N. Dao & Matthew K. Tam, 2019. "A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting," Journal of Global Optimization, Springer, vol. 73(1), pages 83-112, January.
- Francisco J. Aragón Artacho & Rubén Campoy & Matthew K. Tam, 2020. "The Douglas–Rachford algorithm for convex and nonconvex feasibility problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 201-240, April.
- Ohad Giladi & Björn S. Rüffer, 2019. "A Lyapunov Function Construction for a Non-convex Douglas–Rachford Iteration," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 729-750, March.
- Francisco J. Aragón Artacho & Rubén Campoy, 2018. "A new projection method for finding the closest point in the intersection of convex sets," Computational Optimization and Applications, Springer, vol. 69(1), pages 99-132, January.
- Francisco J. Aragón Artacho & Rubén Campoy & Veit Elser, 2020. "An enhanced formulation for solving graph coloring problems with the Douglas–Rachford algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 383-403, June.
- Hoa T. Bui & Scott B. Lindstrom & Vera Roshchina, 2019. "Variational Analysis Down Under Open Problem Session," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 430-437, July.
- Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
- Francisco J. Aragón Artacho & Rubén Campoy & Ilias Kotsireas & Matthew K. Tam, 2018. "A feasibility approach for constructing combinatorial designs of circulant type," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1061-1085, May.
- Scott B. Lindstrom, 2022. "Computable centering methods for spiraling algorithms and their duals, with motivations from the theory of Lyapunov functions," Computational Optimization and Applications, Springer, vol. 83(3), pages 999-1026, December.
- Veit Elser, 2017. "Matrix product constraints by projection methods," Journal of Global Optimization, Springer, vol. 68(2), pages 329-355, June.
- Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
- Minh N. Dao & Hung M. Phan, 2018. "Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems," Journal of Global Optimization, Springer, vol. 72(3), pages 443-474, November.
- Chih-Sheng Chuang & Hongjin He & Zhiyuan Zhang, 2022. "A unified Douglas–Rachford algorithm for generalized DC programming," Journal of Global Optimization, Springer, vol. 82(2), pages 331-349, February.
- Minh N. Dao & Matthew K. Tam, 2019. "Union Averaged Operators with Applications to Proximal Algorithms for Min-Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 61-94, April.
- Minh N. Dao, & Hung M. Phan, 2019. "Linear Convergence of Projection Algorithms," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 715-738, May.
- Minh N. Dao & Neil D. Dizon & Jeffrey A. Hogan & Matthew K. Tam, 2021. "Constraint Reduction Reformulations for Projection Algorithms with Applications to Wavelet Construction," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 201-233, July.
- Francisco J. Aragón Artacho & Jonathan M. Borwein & Matthew K. Tam, 2016. "Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem," Journal of Global Optimization, Springer, vol. 65(2), pages 309-327, June.
More about this item
Keywords
Closed-form expressions; Cycling; Douglas–Rachford algorithm; Feasibility problem; Finite set; Hyperplane; Method of alternating projections; Projector; Reflector;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:74:y:2019:i:1:d:10.1007_s10898-019-00744-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.