IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v35y2018i4d10.1007_s10878-018-0250-5.html
   My bibliography  Save this article

A feasibility approach for constructing combinatorial designs of circulant type

Author

Listed:
  • Francisco J. Aragón Artacho

    (University of Alicante)

  • Rubén Campoy

    (University of Alicante)

  • Ilias Kotsireas

    (Wilfrid Laurier University)

  • Matthew K. Tam

    (Universität Göttingen)

Abstract

In this work, we propose an optimization approach for constructing various classes of circulant combinatorial designs that can be defined in terms of autocorrelation. The problem is formulated as a so-called feasibility problem having three sets, to which the Douglas–Rachford projection algorithm is applied. The approach is illustrated on three different classes of circulant combinatorial designs: circulant weighing matrices, D-optimal matrices of circulant type, and Hadamard matrices with two circulant cores. Furthermore, we explicitly construct two new circulant weighing matrices, a CW(126, 64) and a CW(198, 100), whose existence was previously marked as unresolved in the most recent version of Strassler’s table.

Suggested Citation

  • Francisco J. Aragón Artacho & Rubén Campoy & Ilias Kotsireas & Matthew K. Tam, 2018. "A feasibility approach for constructing combinatorial designs of circulant type," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1061-1085, May.
  • Handle: RePEc:spr:jcomop:v:35:y:2018:i:4:d:10.1007_s10878-018-0250-5
    DOI: 10.1007/s10878-018-0250-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-018-0250-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-018-0250-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francisco J. Aragón Artacho & Jonathan M. Borwein & Matthew K. Tam, 2016. "Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem," Journal of Global Optimization, Springer, vol. 65(2), pages 309-327, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    2. Francisco J. Aragón Artacho & Rubén Campoy, 2018. "A new projection method for finding the closest point in the intersection of convex sets," Computational Optimization and Applications, Springer, vol. 69(1), pages 99-132, January.
    3. Francisco J. Aragón Artacho & Rubén Campoy & Matthew K. Tam, 2020. "The Douglas–Rachford algorithm for convex and nonconvex feasibility problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 201-240, April.
    4. Heinz H. Bauschke & Minh N. Dao & Scott B. Lindstrom, 2019. "The Douglas–Rachford algorithm for a hyperplane and a doubleton," Journal of Global Optimization, Springer, vol. 74(1), pages 79-93, May.
    5. Veit Elser, 2017. "Matrix product constraints by projection methods," Journal of Global Optimization, Springer, vol. 68(2), pages 329-355, June.
    6. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    7. Minh N. Dao & Matthew K. Tam, 2019. "A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting," Journal of Global Optimization, Springer, vol. 73(1), pages 83-112, January.
    8. Chih-Sheng Chuang & Hongjin He & Zhiyuan Zhang, 2022. "A unified Douglas–Rachford algorithm for generalized DC programming," Journal of Global Optimization, Springer, vol. 82(2), pages 331-349, February.
    9. Ohad Giladi & Björn S. Rüffer, 2019. "A Lyapunov Function Construction for a Non-convex Douglas–Rachford Iteration," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 729-750, March.
    10. Francisco J. Aragón Artacho & Rubén Campoy & Veit Elser, 2020. "An enhanced formulation for solving graph coloring problems with the Douglas–Rachford algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 383-403, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:35:y:2018:i:4:d:10.1007_s10878-018-0250-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.