IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v69y2018i1d10.1007_s10589-017-9942-5.html
   My bibliography  Save this article

A new projection method for finding the closest point in the intersection of convex sets

Author

Listed:
  • Francisco J. Aragón Artacho

    (University of Alicante)

  • Rubén Campoy

    (University of Alicante)

Abstract

In this paper we present a new iterative projection method for finding the closest point in the intersection of convex sets to any arbitrary point in a Hilbert space. This method, termed AAMR for averaged alternating modified reflections, can be viewed as an adequate modification of the Douglas–Rachford method that yields a solution to the best approximation problem. Under a constraint qualification at the point of interest, we show strong convergence of the method. In fact, the so-called strong CHIP fully characterizes the convergence of the AAMR method for every point in the space. We report some promising numerical experiments where we compare the performance of AAMR against other projection methods for finding the closest point in the intersection of pairs of finite dimensional subspaces.

Suggested Citation

  • Francisco J. Aragón Artacho & Rubén Campoy, 2018. "A new projection method for finding the closest point in the intersection of convex sets," Computational Optimization and Applications, Springer, vol. 69(1), pages 99-132, January.
  • Handle: RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9942-5
    DOI: 10.1007/s10589-017-9942-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9942-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9942-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Adrian S. Lewis & Jérôme Malick, 2008. "Alternating Projections on Manifolds," Mathematics of Operations Research, INFORMS, vol. 33(1), pages 216-234, February.
    2. Joël Benoist, 2015. "The Douglas–Rachford algorithm for the case of the sphere and the line," Journal of Global Optimization, Springer, vol. 63(2), pages 363-380, October.
    3. Francisco J. Aragón Artacho & Jonathan M. Borwein & Matthew K. Tam, 2016. "Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem," Journal of Global Optimization, Springer, vol. 65(2), pages 309-327, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco J. Aragón Artacho & Rubén Campoy, 2019. "Computing the Resolvent of the Sum of Maximally Monotone Operators with the Averaged Alternating Modified Reflections Algorithm," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 709-726, June.
    2. Dongying Wang & Xianfu Wang, 2019. "A parameterized Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 73(3), pages 839-869, July.
    3. Bian, Fengmiao & Zhang, Xiaoqun, 2021. "A parameterized Douglas–Rachford splitting algorithm for nonconvex optimization," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    4. Francisco J. Aragón Artacho & Rubén Campoy & Matthew K. Tam, 2021. "Strengthened splitting methods for computing resolvents," Computational Optimization and Applications, Springer, vol. 80(2), pages 549-585, November.
    5. Rubén Campoy, 2022. "A product space reformulation with reduced dimension for splitting algorithms," Computational Optimization and Applications, Springer, vol. 83(1), pages 319-348, September.
    6. Yixuan Yang & Yuchao Tang & Chuanxi Zhu, 2019. "Iterative Methods for Computing the Resolvent of Composed Operators in Hilbert Spaces," Mathematics, MDPI, vol. 7(2), pages 1-16, February.
    7. Aragón-Artacho, Francisco J. & Censor, Yair & Gibali, Aviv & Torregrosa-Belén, David, 2023. "The superiorization method with restarted perturbations for split minimization problems with an application to radiotherapy treatment planning," Applied Mathematics and Computation, Elsevier, vol. 440(C).
    8. Francisco J. Aragón Artacho & Rubén Campoy & Matthew K. Tam, 2020. "The Douglas–Rachford algorithm for convex and nonconvex feasibility problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 201-240, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco J. Aragón Artacho & Rubén Campoy & Matthew K. Tam, 2020. "The Douglas–Rachford algorithm for convex and nonconvex feasibility problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 201-240, April.
    2. Heinz H. Bauschke & Minh N. Dao & Scott B. Lindstrom, 2019. "The Douglas–Rachford algorithm for a hyperplane and a doubleton," Journal of Global Optimization, Springer, vol. 74(1), pages 79-93, May.
    3. Minh N. Dao & Matthew K. Tam, 2019. "A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting," Journal of Global Optimization, Springer, vol. 73(1), pages 83-112, January.
    4. Ohad Giladi & Björn S. Rüffer, 2019. "A Lyapunov Function Construction for a Non-convex Douglas–Rachford Iteration," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 729-750, March.
    5. Francisco J. Aragón Artacho & Rubén Campoy & Veit Elser, 2020. "An enhanced formulation for solving graph coloring problems with the Douglas–Rachford algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 383-403, June.
    6. Hoa T. Bui & Scott B. Lindstrom & Vera Roshchina, 2019. "Variational Analysis Down Under Open Problem Session," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 430-437, July.
    7. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    8. Scott B. Lindstrom, 2022. "Computable centering methods for spiraling algorithms and their duals, with motivations from the theory of Lyapunov functions," Computational Optimization and Applications, Springer, vol. 83(3), pages 999-1026, December.
    9. Nguyen Hieu Thao, 2018. "A convergent relaxation of the Douglas–Rachford algorithm," Computational Optimization and Applications, Springer, vol. 70(3), pages 841-863, July.
    10. D. Russell Luke & Nguyen H. Thao & Matthew K. Tam, 2018. "Quantitative Convergence Analysis of Iterated Expansive, Set-Valued Mappings," Mathematics of Operations Research, INFORMS, vol. 43(4), pages 1143-1176, November.
    11. David Salas & Lionel Thibault, 2019. "On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 182(1), pages 189-210, July.
    12. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    13. Jean-Baptiste Hiriart-Urruty & Jérôme Malick, 2012. "A Fresh Variational-Analysis Look at the Positive Semidefinite Matrices World," Journal of Optimization Theory and Applications, Springer, vol. 153(3), pages 551-577, June.
    14. Masaru Ito & Bruno F. Lourenço, 2024. "Eigenvalue programming beyond matrices," Computational Optimization and Applications, Springer, vol. 89(2), pages 361-384, November.
    15. Xiu, Xianchao & Yang, Ying & Kong, Lingchen & Liu, Wanquan, 2020. "tSSNALM: A fast two-stage semi-smooth Newton augmented Lagrangian method for sparse CCA," Applied Mathematics and Computation, Elsevier, vol. 383(C).
    16. Francisco J. Aragón Artacho & Rubén Campoy & Ilias Kotsireas & Matthew K. Tam, 2018. "A feasibility approach for constructing combinatorial designs of circulant type," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1061-1085, May.
    17. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    18. Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
    19. Hédy Attouch & Jérôme Bolte & Patrick Redont & Antoine Soubeyran, 2010. "Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Łojasiewicz Inequality," Mathematics of Operations Research, INFORMS, vol. 35(2), pages 438-457, May.
    20. Veit Elser, 2017. "Matrix product constraints by projection methods," Journal of Global Optimization, Springer, vol. 68(2), pages 329-355, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9942-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.