IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v181y2019i1d10.1007_s10957-018-1443-x.html
   My bibliography  Save this article

Union Averaged Operators with Applications to Proximal Algorithms for Min-Convex Functions

Author

Listed:
  • Minh N. Dao

    (University of Newcastle)

  • Matthew K. Tam

    (Universität Göttingen)

Abstract

In this paper, we introduce and study a class of structured set-valued operators, which we call union averaged nonexpansive. At each point in their domain, the value of such an operator can be expressed as a finite union of single-valued averaged nonexpansive operators. We investigate various structural properties of the class and show, in particular, that is closed under taking unions, convex combinations, and compositions, and that their fixed point iterations are locally convergent around strong fixed points. We then systematically apply our results to analyze proximal algorithms in situations, where union averaged nonexpansive operators naturally arise. In particular, we consider the problem of minimizing the sum two functions, where the first is convex and the second can be expressed as the minimum of finitely many convex functions.

Suggested Citation

  • Minh N. Dao & Matthew K. Tam, 2019. "Union Averaged Operators with Applications to Proximal Algorithms for Min-Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 61-94, April.
  • Handle: RePEc:spr:joptap:v:181:y:2019:i:1:d:10.1007_s10957-018-1443-x
    DOI: 10.1007/s10957-018-1443-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1443-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1443-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Minh N. Dao & Hung M. Phan, 2018. "Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems," Journal of Global Optimization, Springer, vol. 72(3), pages 443-474, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sedi Bartz & Minh N. Dao & Hung M. Phan, 2022. "Conical averagedness and convergence analysis of fixed point algorithms," Journal of Global Optimization, Springer, vol. 82(2), pages 351-373, February.
    2. Alexander J. Zaslavski, 2023. "Global Convergence of Algorithms Based on Unions of Non-Expansive Maps," Mathematics, MDPI, vol. 11(14), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco J. Aragón Artacho & Rubén Campoy & Matthew K. Tam, 2020. "The Douglas–Rachford algorithm for convex and nonconvex feasibility problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 201-240, April.
    2. Heinz H. Bauschke & Minh N. Dao & Scott B. Lindstrom, 2019. "The Douglas–Rachford algorithm for a hyperplane and a doubleton," Journal of Global Optimization, Springer, vol. 74(1), pages 79-93, May.
    3. Minh N. Dao & Matthew K. Tam, 2019. "A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting," Journal of Global Optimization, Springer, vol. 73(1), pages 83-112, January.
    4. Ohad Giladi & Björn S. Rüffer, 2019. "A Lyapunov Function Construction for a Non-convex Douglas–Rachford Iteration," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 729-750, March.
    5. Minh N. Dao & Neil D. Dizon & Jeffrey A. Hogan & Matthew K. Tam, 2021. "Constraint Reduction Reformulations for Projection Algorithms with Applications to Wavelet Construction," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 201-233, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:181:y:2019:i:1:d:10.1007_s10957-018-1443-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.