On Slater’s condition and finite convergence of the Douglas–Rachford algorithm for solving convex feasibility problems in Euclidean spaces
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-015-0373-5
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- H. H. Bauschke & S. G. Kruk, 2004. "Reflection-Projection Method for Convex Feasibility Problems with an Obtuse Cone," Journal of Optimization Theory and Applications, Springer, vol. 120(3), pages 503-531, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Minh N. Dao, & Hung M. Phan, 2019. "Linear Convergence of Projection Algorithms," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 715-738, May.
- Minh N. Dao & Matthew K. Tam, 2019. "A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting," Journal of Global Optimization, Springer, vol. 73(1), pages 83-112, January.
- Heinz H. Bauschke & Minh N. Dao & Scott B. Lindstrom, 2019. "The Douglas–Rachford algorithm for a hyperplane and a doubleton," Journal of Global Optimization, Springer, vol. 74(1), pages 79-93, May.
- Minh N. Dao & Hung M. Phan, 2018. "Linear convergence of the generalized Douglas–Rachford algorithm for feasibility problems," Journal of Global Optimization, Springer, vol. 72(3), pages 443-474, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Meng Wen & Jigen Peng & Yuchao Tang, 2015. "A Cyclic and Simultaneous Iterative Method for Solving the Multiple-Sets Split Feasibility Problem," Journal of Optimization Theory and Applications, Springer, vol. 166(3), pages 844-860, September.
- Jinhua Wang & Yaohua Hu & Carisa Kwok Wai Yu & Xiaojun Zhuang, 2019. "A Family of Projection Gradient Methods for Solving the Multiple-Sets Split Feasibility Problem," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 520-534, November.
- Heinz H. Bauschke & Caifang Wang & Xianfu Wang & Jia Xu, 2015. "On the Finite Convergence of a Projected Cutter Method," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 901-916, June.
- Minh N. Dao, & Hung M. Phan, 2019. "Linear Convergence of Projection Algorithms," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 715-738, May.
More about this item
Keywords
Alternating projections; Convex feasibility problem; Convex set; Douglas–Rachford algorithm; Epigraph; Finite convergence; Method of reflection–projection; Monotone operator; Partial inverse; Polyhedral set; Projector; Slater’s condition;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:65:y:2016:i:2:d:10.1007_s10898-015-0373-5. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.