IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v68y2017i2d10.1007_s10898-016-0466-9.html
   My bibliography  Save this article

Matrix product constraints by projection methods

Author

Listed:
  • Veit Elser

    (Cornell University)

Abstract

The decomposition of a matrix, as a product of factors with particular properties, is a much used tool in numerical analysis. Here we develop methods for decomposing a matrix C into a product XY, where the factors X and Y are required to minimize their distance from an arbitrary pair $$X_0$$ X 0 and $$Y_0$$ Y 0 . This type of decomposition, a projection to a matrix product constraint, in combination with projections that impose structural properties on X and Y, forms the basis of a general method of decomposing a matrix into factors with specified properties. Results are presented for the application of these methods to a number of hard problems in exact factorization.

Suggested Citation

  • Veit Elser, 2017. "Matrix product constraints by projection methods," Journal of Global Optimization, Springer, vol. 68(2), pages 329-355, June.
  • Handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0466-9
    DOI: 10.1007/s10898-016-0466-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0466-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0466-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gillis, Nicolas & Glineur, François & Tuyttens, Daniel & Vandaele, Arnaud, 2015. "Heuristics for exact nonnegative matrix factorization," LIDAM Discussion Papers CORE 2015006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. GILLIS, Nicolas & GLINEUR, François, 2010. "On the geometric interpretation of the nonnegative rank," LIDAM Discussion Papers CORE 2010051, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Francisco J. Aragón Artacho & Jonathan M. Borwein & Matthew K. Tam, 2016. "Global behavior of the Douglas–Rachford method for a nonconvex feasibility problem," Journal of Global Optimization, Springer, vol. 65(2), pages 309-327, June.
    4. William P. Orrick, 2005. "The maximal {-1,1}-determinant of order 15," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 62(2), pages 195-219, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badenbroek, Riley & de Klerk, Etienne, 2020. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," Other publications TiSEM 876ff1ab-036c-4635-9688-1, Tilburg University, School of Economics and Management.
    2. Riley Badenbroek & Etienne de Klerk, 2022. "An Analytic Center Cutting Plane Method to Determine Complete Positivity of a Matrix," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1115-1125, March.
    3. Heinz H. Bauschke & Manish Krishan Lal & Xianfu Wang, 2023. "Projections onto hyperbolas or bilinear constraint sets in Hilbert spaces," Journal of Global Optimization, Springer, vol. 86(1), pages 25-36, May.
    4. Badenbroek, Riley & de Klerk, Etienne, 2022. "An analytic center cutting plane method to determine complete positivity of a matrix," Other publications TiSEM 088da653-b943-4ed0-9720-6, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    2. Gábor Braun & Samuel Fiorini & Sebastian Pokutta & David Steurer, 2015. "Approximation Limits of Linear Programs (Beyond Hierarchies)," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 756-772, March.
    3. Francisco J. Aragón Artacho & Rubén Campoy, 2018. "A new projection method for finding the closest point in the intersection of convex sets," Computational Optimization and Applications, Springer, vol. 69(1), pages 99-132, January.
    4. Gillis, Nicolas & Glineur, François & Tuyttens, Daniel & Vandaele, Arnaud, 2015. "Heuristics for exact nonnegative matrix factorization," LIDAM Discussion Papers CORE 2015006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Francisco J. Aragón Artacho & Rubén Campoy & Ilias Kotsireas & Matthew K. Tam, 2018. "A feasibility approach for constructing combinatorial designs of circulant type," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1061-1085, May.
    6. Luc Bauwens & Gary Koop & Dimitris Korobilis & Jeroen V.K. Rombouts, 2015. "The Contribution of Structural Break Models to Forecasting Macroeconomic Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(4), pages 596-620, June.
    7. DEVOLDER, Olivier & GLINEUR, François & NESTEROV, Yurii, 2011. "First-order methods of smooth convex optimization with inexact oracle," LIDAM Discussion Papers CORE 2011002, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Arnaud Vandaele & François Glineur & Nicolas Gillis, 2018. "Algorithms for positive semidefinite factorization," Computational Optimization and Applications, Springer, vol. 71(1), pages 193-219, September.
    9. Yukihiro Nishimura & Pierre Pestieau, 2016. "Efficient taxation with differential risks of dependence and mortality," Economics Bulletin, AccessEcon, vol. 36(1), pages 52-57.
    10. João Gouveia & Pablo A. Parrilo & Rekha R. Thomas, 2013. "Lifts of Convex Sets and Cone Factorizations," Mathematics of Operations Research, INFORMS, vol. 38(2), pages 248-264, May.
    11. AGRELL, Per & KASPERZEC, Roman, 2010. "Dynamic joint investments in supply chains under information asymmetry," LIDAM Discussion Papers CORE 2010085, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Francisco J. Aragón Artacho & Rubén Campoy & Matthew K. Tam, 2020. "The Douglas–Rachford algorithm for convex and nonconvex feasibility problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 91(2), pages 201-240, April.
    13. Heinz H. Bauschke & Minh N. Dao & Scott B. Lindstrom, 2019. "The Douglas–Rachford algorithm for a hyperplane and a doubleton," Journal of Global Optimization, Springer, vol. 74(1), pages 79-93, May.
    14. Min Li & Zhongming Wu, 2019. "Convergence Analysis of the Generalized Splitting Methods for a Class of Nonconvex Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 183(2), pages 535-565, November.
    15. Minh N. Dao & Matthew K. Tam, 2019. "A Lyapunov-type approach to convergence of the Douglas–Rachford algorithm for a nonconvex setting," Journal of Global Optimization, Springer, vol. 73(1), pages 83-112, January.
    16. Chih-Sheng Chuang & Hongjin He & Zhiyuan Zhang, 2022. "A unified Douglas–Rachford algorithm for generalized DC programming," Journal of Global Optimization, Springer, vol. 82(2), pages 331-349, February.
    17. Gribling, Sander & Laat, David de & Laurent, Monique, 2017. "Lower Bounds on Matrix Factorization Ranks via Noncommutative Polynomial Optimization," Other publications TiSEM 2dddf156-3d4b-4936-bf02-a, Tilburg University, School of Economics and Management.
    18. Ohad Giladi & Björn S. Rüffer, 2019. "A Lyapunov Function Construction for a Non-convex Douglas–Rachford Iteration," Journal of Optimization Theory and Applications, Springer, vol. 180(3), pages 729-750, March.
    19. Francisco J. Aragón Artacho & Rubén Campoy & Veit Elser, 2020. "An enhanced formulation for solving graph coloring problems with the Douglas–Rachford algorithm," Journal of Global Optimization, Springer, vol. 77(2), pages 383-403, June.
    20. NESTEROV, Yurii, 2011. "Random gradient-free minimization of convex functions," LIDAM Discussion Papers CORE 2011001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:68:y:2017:i:2:d:10.1007_s10898-016-0466-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.