IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v67y2017i3d10.1007_s10898-016-0430-8.html
   My bibliography  Save this article

Enclosure of all index-1 saddle points of general nonlinear functions

Author

Listed:
  • Dimitrios Nerantzis

    (Imperial College London)

  • Claire S. Adjiman

    (Imperial College London)

Abstract

Transition states (index-1 saddle points) play a crucial role in determining the rates of chemical transformations but their reliable identification remains challenging in many applications. Deterministic global optimization methods have previously been employed for the location of transition states (TSs) by initially finding all stationary points and then identifying the TSs among the set of solutions. We propose several regional tests, applicable to general nonlinear, twice continuously differentiable functions, to accelerate the convergence of such approaches by identifying areas that do not contain any TS or that may contain a unique TS. The tests are based on the application of the interval extension of theorems from linear algebra to an interval Hessian matrix. They can be used within the framework of global optimization methods with the potential of reducing the computational time for TS location. We present the theory behind the tests, discuss their algorithmic complexity and show via a few examples that significant gains in computational time can be achieved by using these tests.

Suggested Citation

  • Dimitrios Nerantzis & Claire S. Adjiman, 2017. "Enclosure of all index-1 saddle points of general nonlinear functions," Journal of Global Optimization, Springer, vol. 67(3), pages 451-474, March.
  • Handle: RePEc:spr:jglopt:v:67:y:2017:i:3:d:10.1007_s10898-016-0430-8
    DOI: 10.1007/s10898-016-0430-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0430-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0430-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anders Skjäl & Tapio Westerlund, 2014. "New methods for calculating $$\alpha $$ BB-type underestimators," Journal of Global Optimization, Springer, vol. 58(3), pages 411-427, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    2. Dimitrios Nerantzis & Claire S. Adjiman, 2019. "Tighter $$\alpha $$ α BB relaxations through a refinement scheme for the scaled Gerschgorin theorem," Journal of Global Optimization, Springer, vol. 73(3), pages 467-483, March.
    3. Gabriele Eichfelder & Tobias Gerlach & Susanne Sumi, 2016. "A modification of the $$\alpha \hbox {BB}$$ α BB method for box-constrained optimization and an application to inverse kinematics," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 93-121, February.
    4. Milan Hladík, 2018. "Testing pseudoconvexity via interval computation," Journal of Global Optimization, Springer, vol. 71(3), pages 443-455, July.
    5. M. M. Faruque Hasan, 2018. "An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems," Journal of Global Optimization, Springer, vol. 71(4), pages 735-752, August.
    6. Milan Hladík & Lubomir V. Kolev & Iwona Skalna, 2021. "Linear interval parametric approach to testing pseudoconvexity," Journal of Global Optimization, Springer, vol. 79(2), pages 351-368, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:67:y:2017:i:3:d:10.1007_s10898-016-0430-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.