IDEAS home Printed from https://ideas.repec.org/a/spr/eurjco/v4y2016i1d10.1007_s13675-015-0056-5.html
   My bibliography  Save this article

A modification of the $$\alpha \hbox {BB}$$ α BB method for box-constrained optimization and an application to inverse kinematics

Author

Listed:
  • Gabriele Eichfelder

    (Technische Universität Ilmenau)

  • Tobias Gerlach

    (Technische Universität Ilmenau)

  • Susanne Sumi

    (Technische Universität Ilmenau)

Abstract

For many practical applications it is important to determine not only a numerical approximation of one but a representation of the whole set of globally optimal solutions of a non-convex optimization problem. Then one element of this representation may be chosen based on additional information which cannot be formulated as a mathematical function or within a hierarchical problem formulation. We present such an application in the field of robotic design. This application problem can be modeled as a smooth box-constrained optimization problem. We extend the well-known $$\alpha \hbox {BB}$$ α BB method such that it can be used to find an approximation of the set of globally optimal solutions with a predefined quality. We illustrate the properties and give a proof for the finiteness and correctness of our modified $$\alpha \hbox {BB}$$ α BB method.

Suggested Citation

  • Gabriele Eichfelder & Tobias Gerlach & Susanne Sumi, 2016. "A modification of the $$\alpha \hbox {BB}$$ α BB method for box-constrained optimization and an application to inverse kinematics," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 93-121, February.
  • Handle: RePEc:spr:eurjco:v:4:y:2016:i:1:d:10.1007_s13675-015-0056-5
    DOI: 10.1007/s13675-015-0056-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13675-015-0056-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13675-015-0056-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    2. Anders Skjäl & Tapio Westerlund, 2014. "New methods for calculating $$\alpha $$ BB-type underestimators," Journal of Global Optimization, Springer, vol. 58(3), pages 411-427, March.
    3. Moritz Schulze Darup & Martin Kastsian & Stefan Mross & Martin Mönnigmann, 2014. "Efficient computation of spectral bounds for Hessian matrices on hyperrectangles for global optimization," Journal of Global Optimization, Springer, vol. 58(4), pages 631-652, April.
    4. A. Skjäl & T. Westerlund & R. Misener & C. A. Floudas, 2012. "A Generalization of the Classical αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 462-490, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. M. Faruque Hasan, 2018. "An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems," Journal of Global Optimization, Springer, vol. 71(4), pages 735-752, August.
    2. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    3. Dimitrios Nerantzis & Claire S. Adjiman, 2019. "Tighter $$\alpha $$ α BB relaxations through a refinement scheme for the scaled Gerschgorin theorem," Journal of Global Optimization, Springer, vol. 73(3), pages 467-483, March.
    4. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    5. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    6. Eli Towle & James Luedtke, 2018. "New solution approaches for the maximum-reliability stochastic network interdiction problem," Computational Management Science, Springer, vol. 15(3), pages 455-477, October.
    7. N. V. Thoai, 2000. "Duality Bound Method for the General Quadratic Programming Problem with Quadratic Constraints," Journal of Optimization Theory and Applications, Springer, vol. 107(2), pages 331-354, November.
    8. Radu Baltean-Lugojan & Ruth Misener, 2018. "Piecewise parametric structure in the pooling problem: from sparse strongly-polynomial solutions to NP-hardness," Journal of Global Optimization, Springer, vol. 71(4), pages 655-690, August.
    9. Evrim Dalkiran & Hanif Sherali, 2013. "Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality," Journal of Global Optimization, Springer, vol. 57(4), pages 1147-1172, December.
    10. Gabriele Eichfelder & Peter Kirst & Laura Meng & Oliver Stein, 2021. "A general branch-and-bound framework for continuous global multiobjective optimization," Journal of Global Optimization, Springer, vol. 80(1), pages 195-227, May.
    11. Sonia Cafieri & Jon Lee & Leo Liberti, 2010. "On convex relaxations of quadrilinear terms," Journal of Global Optimization, Springer, vol. 47(4), pages 661-685, August.
    12. Keith Zorn & Nikolaos Sahinidis, 2014. "Global optimization of general nonconvex problems with intermediate polynomial substructures," Journal of Global Optimization, Springer, vol. 59(2), pages 673-693, July.
    13. Tsao, Yu-Chung & Lu, Jye-Chyi & An, Na & Al-Khayyal, Faiz & Lu, Richard W. & Han, Guanghua, 2014. "Retailer shelf-space management with trade allowance: A Stackelberg game between retailer and manufacturers," International Journal of Production Economics, Elsevier, vol. 148(C), pages 133-144.
    14. Al-Khayyal, Faiz & Hwang, Seung-June, 2007. "Inventory constrained maritime routing and scheduling for multi-commodity liquid bulk, Part I: Applications and model," European Journal of Operational Research, Elsevier, vol. 176(1), pages 106-130, January.
    15. Marcia Fampa & Jon Lee, 2021. "Convexification of bilinear forms through non-symmetric lifting," Journal of Global Optimization, Springer, vol. 80(2), pages 287-305, June.
    16. Manuel Ruiz & Olivier Briant & Jean-Maurice Clochard & Bernard Penz, 2013. "Large-scale standard pooling problems with constrained pools and fixed demands," Journal of Global Optimization, Springer, vol. 56(3), pages 939-956, July.
    17. Michelle L. Blom & Christina N. Burt & Adrian R. Pearce & Peter J. Stuckey, 2014. "A Decomposition-Based Heuristic for Collaborative Scheduling in a Network of Open-Pit Mines," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 658-676, November.
    18. Jochen Gorski & Frank Pfeuffer & Kathrin Klamroth, 2007. "Biconvex sets and optimization with biconvex functions: a survey and extensions," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 373-407, December.
    19. J Irion & J-C Lu & F A Al-Khayyal & Y-C Tsao, 2011. "A hierarchical decomposition approach to retail shelf space management and assortment decisions," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1861-1870, October.
    20. Marco Locatelli, 2016. "Polyhedral subdivisions and functional forms for the convex envelopes of bilinear, fractional and other bivariate functions over general polytopes," Journal of Global Optimization, Springer, vol. 66(4), pages 629-668, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjco:v:4:y:2016:i:1:d:10.1007_s13675-015-0056-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.