IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v58y2014i3p411-427.html
   My bibliography  Save this article

New methods for calculating $$\alpha $$ BB-type underestimators

Author

Listed:
  • Anders Skjäl
  • Tapio Westerlund

Abstract

Most branch-and-bound algorithms in global optimization depend on convex underestimators to calculate lower bounds of a minimization objective function. The $$\alpha $$ BB methodology produces such underestimators for sufficiently smooth functions by analyzing interval Hessian approximations. Several methods to rigorously determine the $$\alpha $$ BB parameters have been proposed, varying in tightness and computational complexity. We present new polynomial-time methods and compare their properties to existing approaches. The new methods are based on classical eigenvalue bounds from linear algebra and a more recent result on interval matrices. We show how parameters can be optimized with respect to the average underestimation error, in addition to the maximum error commonly used in $$\alpha $$ BB methods. Numerical comparisons are made, based on test functions and a set of randomly generated interval Hessians. The paper shows the relative strengths of the methods, and proves exact results where one method dominates another. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Anders Skjäl & Tapio Westerlund, 2014. "New methods for calculating $$\alpha $$ BB-type underestimators," Journal of Global Optimization, Springer, vol. 58(3), pages 411-427, March.
  • Handle: RePEc:spr:jglopt:v:58:y:2014:i:3:p:411-427
    DOI: 10.1007/s10898-013-0057-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0057-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0057-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Skjäl & T. Westerlund & R. Misener & C. A. Floudas, 2012. "A Generalization of the Classical αBB Convex Underestimation via Diagonal and Nondiagonal Quadratic Terms," Journal of Optimization Theory and Applications, Springer, vol. 154(2), pages 462-490, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Milan Hladík, 2018. "Testing pseudoconvexity via interval computation," Journal of Global Optimization, Springer, vol. 71(3), pages 443-455, July.
    2. Dimitrios Nerantzis & Claire S. Adjiman, 2019. "Tighter $$\alpha $$ α BB relaxations through a refinement scheme for the scaled Gerschgorin theorem," Journal of Global Optimization, Springer, vol. 73(3), pages 467-483, March.
    3. Dimitrios Nerantzis & Claire S. Adjiman, 2017. "Enclosure of all index-1 saddle points of general nonlinear functions," Journal of Global Optimization, Springer, vol. 67(3), pages 451-474, March.
    4. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    5. Gabriele Eichfelder & Tobias Gerlach & Susanne Sumi, 2016. "A modification of the $$\alpha \hbox {BB}$$ α BB method for box-constrained optimization and an application to inverse kinematics," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 93-121, February.
    6. Milan Hladík & Lubomir V. Kolev & Iwona Skalna, 2021. "Linear interval parametric approach to testing pseudoconvexity," Journal of Global Optimization, Springer, vol. 79(2), pages 351-368, February.
    7. M. M. Faruque Hasan, 2018. "An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems," Journal of Global Optimization, Springer, vol. 71(4), pages 735-752, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. N. Kazazakis & C. S. Adjiman, 2018. "Arbitrarily tight $$\alpha $$ α BB underestimators of general non-linear functions over sub-optimal domains," Journal of Global Optimization, Springer, vol. 71(4), pages 815-844, August.
    2. Dimitrios Nerantzis & Claire S. Adjiman, 2019. "Tighter $$\alpha $$ α BB relaxations through a refinement scheme for the scaled Gerschgorin theorem," Journal of Global Optimization, Springer, vol. 73(3), pages 467-483, March.
    3. Gabriele Eichfelder & Tobias Gerlach & Susanne Sumi, 2016. "A modification of the $$\alpha \hbox {BB}$$ α BB method for box-constrained optimization and an application to inverse kinematics," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 93-121, February.
    4. Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
    5. M. M. Faruque Hasan, 2018. "An edge-concave underestimator for the global optimization of twice-differentiable nonconvex problems," Journal of Global Optimization, Springer, vol. 71(4), pages 735-752, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:58:y:2014:i:3:p:411-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.