IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v33y2021i4p1368-1383.html
   My bibliography  Save this article

A New Global Optimization Scheme for Quadratic Programs with Low-Rank Nonconvexity

Author

Listed:
  • Xiaoli Cen

    (Key Laboratory of Ministry of Education for Information Mathematics and Behavior, School of Mathematical Sciences, Beihang University, Beijing 100191, China)

  • Yong Xia

    (Key Laboratory of Ministry of Education for Information Mathematics and Behavior, School of Mathematical Sciences, Beihang University, Beijing 100191, China)

Abstract

We consider the classical convex constrained nonconvex quadratic programming problem where the Hessian matrix of the objective to be minimized has r negative eigenvalues, denoted by (QP r ). Based on a biconvex programming reformulation in a slightly higher dimension, we propose a novel branch-and-bound algorithm to solve (QP 1 ) and show that it returns an ɛ -approximate solution of (QP 1 ) in at most O ( 1 / ɛ ) iterations. We further extend the new algorithm to solve the general (QP r ) with r > 1. Computational comparison shows the efficiency of our proposed global optimization method for small r . Finally, we extend the explicit relaxation approach for (QP 1 ) to (QP r ) with r > 1. Summary of Contribution: Nonconvex quadratic program (QP) is a classical optimization problem in operations research. This paper aims at globally solving the QP where the Hessian matrix of the objective to be minimized has r negative eigenvalues. It is known to be nondeterministic polynomial-time hard even when r = 1. This paper presents a novel algorithm to globally solve the QP for r = 1 and then extends to general r . Numerical results demonstrate the superiority of the proposed algorithm in comparison with state-of-the-art algorithms/software for small r .

Suggested Citation

  • Xiaoli Cen & Yong Xia, 2021. "A New Global Optimization Scheme for Quadratic Programs with Low-Rank Nonconvexity," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1368-1383, October.
  • Handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1368-1383
    DOI: 10.1287/ijoc.2020.1017
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2020.1017
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2020.1017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Samuel Burer & Dieter Vandenbussche, 2009. "Globally solving box-constrained nonconvex quadratic programs with semidefinite-based finite branch-and-bound," Computational Optimization and Applications, Springer, vol. 43(2), pages 181-195, June.
    2. Riccardo Cambini & Claudio Sodini, 2002. "A Finite Algorithm for a Particular D.C. Quadratic Programming Problem," Annals of Operations Research, Springer, vol. 117(1), pages 33-49, November.
    3. Cheng Lu & Zhibin Deng & Qingwei Jin, 2017. "An eigenvalue decomposition based branch-and-bound algorithm for nonconvex quadratic programming problems with convex quadratic constraints," Journal of Global Optimization, Springer, vol. 67(3), pages 475-493, March.
    4. Minyue Fu & Zhi-Quan Luo & Yinyu Ye, 1998. "Approximation Algorithms for Quadratic Programming," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 29-50, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Hongwei & Liu, Sanyang & Lu, Nan, 2015. "A parametric linear relaxation algorithm for globally solving nonconvex quadratic programming," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 973-985.
    2. Sturm, J.F. & Zhang, S., 2001. "On Cones of Nonnegative Quadratic Functions," Discussion Paper 2001-26, Tilburg University, Center for Economic Research.
    3. Wei Xia & Juan C. Vera & Luis F. Zuluaga, 2020. "Globally Solving Nonconvex Quadratic Programs via Linear Integer Programming Techniques," INFORMS Journal on Computing, INFORMS, vol. 32(1), pages 40-56, January.
    4. Zhuoyi Xu & Linbin Li & Yong Xia, 2023. "A partial ellipsoidal approximation scheme for nonconvex homogeneous quadratic optimization with quadratic constraints," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 98(1), pages 93-109, August.
    5. Alexandre Belloni & Robert M. Freund & Santosh Vempala, 2009. "An Efficient Rescaled Perceptron Algorithm for Conic Systems," Mathematics of Operations Research, INFORMS, vol. 34(3), pages 621-641, August.
    6. Christoph Buchheim & Maribel Montenegro & Angelika Wiegele, 2019. "SDP-based branch-and-bound for non-convex quadratic integer optimization," Journal of Global Optimization, Springer, vol. 73(3), pages 485-514, March.
    7. D. Henrion & S. Tarbouriech & D. Arzelier, 2001. "LMI Approximations for the Radius of the Intersection of Ellipsoids: Survey," Journal of Optimization Theory and Applications, Springer, vol. 108(1), pages 1-28, January.
    8. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    9. Tongli Zhang & Yong Xia, 2022. "Comment on “Approximation algorithms for quadratic programming”," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1099-1103, September.
    10. Edirisinghe, Chanaka & Jeong, Jaehwan & Chen, Jingnan, 2021. "Optimal portfolio deleveraging under market impact and margin restrictions," European Journal of Operational Research, Elsevier, vol. 294(2), pages 746-759.
    11. Cheng Lu & Zhibin Deng & Jing Zhou & Xiaoling Guo, 2019. "A sensitive-eigenvector based global algorithm for quadratically constrained quadratic programming," Journal of Global Optimization, Springer, vol. 73(2), pages 371-388, February.
    12. Hezhi Luo & Yuanyuan Chen & Xianye Zhang & Duan Li & Huixian Wu, 2020. "Effective Algorithms for Optimal Portfolio Deleveraging Problem with Cross Impact," Papers 2012.07368, arXiv.org, revised Jan 2021.
    13. Hezhi Luo & Xiaodong Ding & Jiming Peng & Rujun Jiang & Duan Li, 2021. "Complexity Results and Effective Algorithms for Worst-Case Linear Optimization Under Uncertainties," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 180-197, January.
    14. Xiaodong Ding & Hezhi Luo & Huixian Wu & Jianzhen Liu, 2021. "An efficient global algorithm for worst-case linear optimization under uncertainties based on nonlinear semidefinite relaxation," Computational Optimization and Applications, Springer, vol. 80(1), pages 89-120, September.
    15. Sven de Vries & Bernd Perscheid, 2022. "Tight compact extended relaxations for nonconvex quadratic programming problems with box constraints," Journal of Global Optimization, Springer, vol. 84(3), pages 591-606, November.
    16. Nadav Hallak & Marc Teboulle, 2020. "Finding Second-Order Stationary Points in Constrained Minimization: A Feasible Direction Approach," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 480-503, August.
    17. Jos F. Sturm & Shuzhong Zhang, 2003. "On Cones of Nonnegative Quadratic Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 246-267, May.
    18. Riccardo Cambini & Claudio Sodini, 2010. "Global optimization of a rank-two nonconvex program," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 165-180, February.
    19. X. J. Zheng & X. L. Sun & D. Li, 2010. "Separable Relaxation for Nonconvex Quadratic Integer Programming: Integer Diagonalization Approach," Journal of Optimization Theory and Applications, Springer, vol. 146(2), pages 463-489, August.
    20. Zhuoyi Xu & Yong Xia & Jiulin Wang, 2021. "Cheaper relaxation and better approximation for multi-ball constrained quadratic optimization and extension," Journal of Global Optimization, Springer, vol. 80(2), pages 341-356, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:33:y:2021:i:4:p:1368-1383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.