IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v73y2019i2d10.1007_s10898-018-0697-z.html
   My bibliography  Save this article

Iteration-complexity analysis of a generalized alternating direction method of multipliers

Author

Listed:
  • V. A. Adona

    (Universidade Federal de Goias)

  • M. L. N. Gonçalves

    (Universidade Federal de Goias)

  • J. G. Melo

    (Universidade Federal de Goias)

Abstract

This paper analyzes the iteration-complexity of a generalized alternating direction method of multipliers (G-ADMM) for solving separable linearly constrained convex optimization problems. This ADMM variant, first proposed by Bertsekas and Eckstein, introduces a relaxation parameter $$\alpha $$ α into the second ADMM subproblem in order to improve its computational performance. It is shown that, for a given tolerance $$\varepsilon >0$$ ε > 0 , the G-ADMM with $$\alpha \in (0, 2)$$ α ∈ ( 0 , 2 ) provides, in at most $${\mathcal {O}}(1/\varepsilon ^2)$$ O ( 1 / ε 2 ) iterations, an approximate solution of the Lagrangian system associated to the optimization problem under consideration. It is further demonstrated that, in at most $${\mathcal {O}}(1/\varepsilon )$$ O ( 1 / ε ) iterations, an approximate solution of the Lagrangian system can be obtained by means of an ergodic sequence associated to a sequence generated by the G-ADMM with $$\alpha \in (0, 2]$$ α ∈ ( 0 , 2 ] . Our approach consists of interpreting the G-ADMM as an instance of a hybrid proximal extragradient framework with some special properties. Some preliminary numerical experiments are reported in order to confirm that the use of $$\alpha >1$$ α > 1 can lead to a better numerical performance than $$\alpha =1$$ α = 1 (which corresponds to the standard ADMM).

Suggested Citation

  • V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2019. "Iteration-complexity analysis of a generalized alternating direction method of multipliers," Journal of Global Optimization, Springer, vol. 73(2), pages 331-348, February.
  • Handle: RePEc:spr:jglopt:v:73:y:2019:i:2:d:10.1007_s10898-018-0697-z
    DOI: 10.1007/s10898-018-0697-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-018-0697-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-018-0697-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Max L. N. Gonçalves & Maicon Marques Alves & Jefferson G. Melo, 2018. "Pointwise and Ergodic Convergence Rates of a Variable Metric Proximal Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 448-478, May.
    2. Deren Han & Xiaoming Yuan, 2012. "A Note on the Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 155(1), pages 227-238, October.
    3. Ying Cui & Xudong Li & Defeng Sun & Kim-Chuan Toh, 2016. "On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1013-1041, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2020. "An inexact proximal generalized alternating direction method of multipliers," Computational Optimization and Applications, Springer, vol. 76(3), pages 621-647, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Puya Latafat & Panagiotis Patrinos, 2017. "Asymmetric forward–backward–adjoint splitting for solving monotone inclusions involving three operators," Computational Optimization and Applications, Springer, vol. 68(1), pages 57-93, September.
    2. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    3. Liusheng Hou & Hongjin He & Junfeng Yang, 2016. "A partially parallel splitting method for multiple-block separable convex programming with applications to robust PCA," Computational Optimization and Applications, Springer, vol. 63(1), pages 273-303, January.
    4. Bingsheng He & Min Tao & Xiaoming Yuan, 2017. "Convergence Rate Analysis for the Alternating Direction Method of Multipliers with a Substitution Procedure for Separable Convex Programming," Mathematics of Operations Research, INFORMS, vol. 42(3), pages 662-691, August.
    5. Yu-Hong Dai & Fangfang Xu & Liwei Zhang, 2023. "Alternating direction method of multipliers for linear hyperspectral unmixing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 289-310, June.
    6. Hongsheng Liu & Shu Lu, 2019. "Convergence of the augmented decomposition algorithm," Computational Optimization and Applications, Springer, vol. 72(1), pages 179-213, January.
    7. V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2020. "An inexact proximal generalized alternating direction method of multipliers," Computational Optimization and Applications, Springer, vol. 76(3), pages 621-647, July.
    8. Deren Han & Defeng Sun & Liwei Zhang, 2018. "Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 622-637, May.
    9. Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
    10. Maryam Yashtini, 2021. "Multi-block Nonconvex Nonsmooth Proximal ADMM: Convergence and Rates Under Kurdyka–Łojasiewicz Property," Journal of Optimization Theory and Applications, Springer, vol. 190(3), pages 966-998, September.
    11. Max L. N. Gonçalves & Maicon Marques Alves & Jefferson G. Melo, 2018. "Pointwise and Ergodic Convergence Rates of a Variable Metric Proximal Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 448-478, May.
    12. Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
    13. Wenli Huang & Yuchao Tang & Meng Wen & Haiyang Li, 2022. "Relaxed Variable Metric Primal-Dual Fixed-Point Algorithm with Applications," Mathematics, MDPI, vol. 10(22), pages 1-16, November.
    14. Tahereh Khodamoradi & Maziar Salahi, 2023. "Extended mean-conditional value-at-risk portfolio optimization with PADM and conditional scenario reduction technique," Computational Statistics, Springer, vol. 38(2), pages 1023-1040, June.
    15. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    16. William W. Hager & Hongchao Zhang, 2020. "Convergence rates for an inexact ADMM applied to separable convex optimization," Computational Optimization and Applications, Springer, vol. 77(3), pages 729-754, December.
    17. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    18. William W. Hager & Hongchao Zhang, 2019. "Inexact alternating direction methods of multipliers for separable convex optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 201-235, May.
    19. Ruslan Abdulkadirov & Pavel Lyakhov & Nikolay Nagornov, 2023. "Survey of Optimization Algorithms in Modern Neural Networks," Mathematics, MDPI, vol. 11(11), pages 1-37, May.
    20. Liu, Zhiyuan & Zhang, Honggang & Zhang, Kai & Zhou, Zihan, 2023. "Integrating alternating direction method of multipliers and bush for solving the traffic assignment problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:73:y:2019:i:2:d:10.1007_s10898-018-0697-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.