IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v177y2018i2d10.1007_s10957-018-1232-6.html
   My bibliography  Save this article

Pointwise and Ergodic Convergence Rates of a Variable Metric Proximal Alternating Direction Method of Multipliers

Author

Listed:
  • Max L. N. Gonçalves

    (Universidade Federal de Goiás)

  • Maicon Marques Alves

    (Universidade Federal de Santa Catarina)

  • Jefferson G. Melo

    (Universidade Federal de Goiás)

Abstract

In this paper, we obtain global pointwise and ergodic convergence rates for a variable metric proximal alternating direction method of multipliers for solving linearly constrained convex optimization problems. We first propose and study nonasymptotic convergence rates of a variable metric hybrid proximal extragradient framework for solving monotone inclusions. Then, the convergence rates for the former method are obtained essentially by showing that it falls within the latter framework. To the best of our knowledge, this is the first time that global pointwise (resp. pointwise and ergodic) convergence rates are obtained for the variable metric proximal alternating direction method of multipliers (resp. variable metric hybrid proximal extragradient framework).

Suggested Citation

  • Max L. N. Gonçalves & Maicon Marques Alves & Jefferson G. Melo, 2018. "Pointwise and Ergodic Convergence Rates of a Variable Metric Proximal Alternating Direction Method of Multipliers," Journal of Optimization Theory and Applications, Springer, vol. 177(2), pages 448-478, May.
  • Handle: RePEc:spr:joptap:v:177:y:2018:i:2:d:10.1007_s10957-018-1232-6
    DOI: 10.1007/s10957-018-1232-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1232-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1232-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. B. S. He & H. Yang & S. L. Wang, 2000. "Alternating Direction Method with Self-Adaptive Penalty Parameters for Monotone Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 106(2), pages 337-356, August.
    2. Ying Cui & Xudong Li & Defeng Sun & Kim-Chuan Toh, 2016. "On the Convergence Properties of a Majorized Alternating Direction Method of Multipliers for Linearly Constrained Convex Optimization Problems with Coupled Objective Functions," Journal of Optimization Theory and Applications, Springer, vol. 169(3), pages 1013-1041, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2019. "Iteration-complexity analysis of a generalized alternating direction method of multipliers," Journal of Global Optimization, Springer, vol. 73(2), pages 331-348, February.
    2. Vando A. Adona & Max L. N. Gonçalves & Jefferson G. Melo, 2019. "A Partially Inexact Proximal Alternating Direction Method of Multipliers and Its Iteration-Complexity Analysis," Journal of Optimization Theory and Applications, Springer, vol. 182(2), pages 640-666, August.
    3. V. A. Adona & M. L. N. Gonçalves & J. G. Melo, 2020. "An inexact proximal generalized alternating direction method of multipliers," Computational Optimization and Applications, Springer, vol. 76(3), pages 621-647, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kun Jin & Yevgeniy Vorobeychik & Mingyan Liu, 2021. "Multi-Scale Games: Representing and Solving Games on Networks with Group Structure," Papers 2101.08314, arXiv.org.
    2. Dolgopolik, Maksim V., 2021. "The alternating direction method of multipliers for finding the distance between ellipsoids," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    3. Yao, Yu & Zhu, Xiaoning & Dong, Hongyu & Wu, Shengnan & Wu, Hailong & Carol Tong, Lu & Zhou, Xuesong, 2019. "ADMM-based problem decomposition scheme for vehicle routing problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 156-174.
    4. Lijun Xu & Bo Yu & Yin Zhang, 2017. "An alternating direction and projection algorithm for structure-enforced matrix factorization," Computational Optimization and Applications, Springer, vol. 68(2), pages 333-362, November.
    5. Hou, Yanqiu & Bao, Minglei & Sang, Maosheng & Ding, Yi, 2024. "A market framework to exploit the multi-energy operating reserve of smart energy hubs in the integrated electricity-gas systems," Applied Energy, Elsevier, vol. 357(C).
    6. Z. K. Jiang & X. M. Yuan, 2010. "New Parallel Descent-like Method for Solving a Class of Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 145(2), pages 311-323, May.
    7. Yu-Hong Dai & Fangfang Xu & Liwei Zhang, 2023. "Alternating direction method of multipliers for linear hyperspectral unmixing," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 97(3), pages 289-310, June.
    8. Dirk A. Lorenz & Quoc Tran-Dinh, 2019. "Non-stationary Douglas–Rachford and alternating direction method of multipliers: adaptive step-sizes and convergence," Computational Optimization and Applications, Springer, vol. 74(1), pages 67-92, September.
    9. Yunhai Xiao & Hong Zhu & Soon-Yi Wu, 2013. "Primal and dual alternating direction algorithms for ℓ 1 -ℓ 1 -norm minimization problems in compressive sensing," Computational Optimization and Applications, Springer, vol. 54(2), pages 441-459, March.
    10. Wu, Yiqian & Zhang, Xuan & Sun, Hongbin, 2021. "A multi-time-scale autonomous energy trading framework within distribution networks based on blockchain," Applied Energy, Elsevier, vol. 287(C).
    11. X. Wang & S. Li & X. Kou & Q. Zhang, 2015. "A new alternating direction method for linearly constrained nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 62(4), pages 695-709, August.
    12. Deren Han & Defeng Sun & Liwei Zhang, 2018. "Linear Rate Convergence of the Alternating Direction Method of Multipliers for Convex Composite Programming," Mathematics of Operations Research, INFORMS, vol. 43(2), pages 622-637, May.
    13. N. Aybat & G. Iyengar, 2015. "An alternating direction method with increasing penalty for stable principal component pursuit," Computational Optimization and Applications, Springer, vol. 61(3), pages 635-668, July.
    14. Jianlin Jiang & Liyun Ling & Yan Gu & Su Zhang & Yibing Lv, 2023. "Customized Alternating Direction Methods of Multipliers for Generalized Multi-facility Weber Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 362-389, January.
    15. Jean-Charles Richard & Thierry Roncalli, 2019. "Constrained Risk Budgeting Portfolios: Theory, Algorithms, Applications & Puzzles," Papers 1902.05710, arXiv.org.
    16. Jianlin Jiang & Su Zhang & Yibing Lv & Xin Du & Ziwei Yan, 2020. "An ADMM-based location–allocation algorithm for nonconvex constrained multi-source Weber problem under gauge," Journal of Global Optimization, Springer, vol. 76(4), pages 793-818, April.
    17. Zhao, Baining & Qian, Tong & Li, Weiwei & Xin, Yanli & Zhao, Wei & Lin, Zekang & Tang, Wenhu & Jin, Xin & Cao, Wangzhang & Pan, Tingzhe, 2024. "Fast distributed co-optimization of electricity and natural gas systems hedging against wind fluctuation and uncertainty," Energy, Elsevier, vol. 298(C).
    18. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    19. Myungjin Kim & Li Wang & Yuyu Zhou, 2021. "Spatially Varying Coefficient Models with Sign Preservation of the Coefficient Functions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 26(3), pages 367-386, September.
    20. Bingsheng He & Feng Ma & Xiaoming Yuan, 2020. "Optimally linearizing the alternating direction method of multipliers for convex programming," Computational Optimization and Applications, Springer, vol. 75(2), pages 361-388, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:177:y:2018:i:2:d:10.1007_s10957-018-1232-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.