IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v313y2024i1p69-91.html
   My bibliography  Save this article

Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts

Author

Listed:
  • Lastra-Díaz, Juan J.
  • Ortuño, M. Teresa

Abstract

The irregular strip-packing problem, also known as nesting or marker making, is defined as the automatic computation of a non-overlapping placement of a set of non-convex polygons onto a rectangular strip of fixed width and unbounded length, such that the strip length is minimized. Nesting methods based on heuristics are a mature technology, and currently, the only practical solution to this problem. However, recent performance gains of the Mixed-Integer Programming (MIP) solvers, together with the known limitations of the heuristics methods, have encouraged the exploration of exact optimization models for nesting during the last decade. Despite the research effort, there is room to improve the efficiency of the current family of exact MIP models for nesting. In order to bridge this gap, this work introduces a new family of continuous MIP models based on a novel formulation of the NoFit-Polygon Covering Model (NFP-CM), called NFP-CM based on Vertical Slices (NFP-CM-VS). Our new family of MIP models is based on a new convex decomposition of the feasible space of relative placements between pieces into vertical slices, together with a new family of valid inequalities, symmetry breakings, and variable eliminations derived from the former convex decomposition. Our experiments show that our new NFP-CM-VS models outperform the current state-of-the-art MIP models. Ten instances are solved up to optimality within one hour for the first time, including one with 27 pieces. Finally, we provide a detailed reproducibility protocol and dataset as supplementary material to allow the exact replication of our models, experiments, and results.

Suggested Citation

  • Lastra-Díaz, Juan J. & Ortuño, M. Teresa, 2024. "Mixed-integer programming models for irregular strip packing based on vertical slices and feasibility cuts," European Journal of Operational Research, Elsevier, vol. 313(1), pages 69-91.
  • Handle: RePEc:eee:ejores:v:313:y:2024:i:1:p:69-91
    DOI: 10.1016/j.ejor.2023.08.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723006148
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.08.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aline A.S. Leao & Franklina M.B. Toledo & José Fernando Oliveira & Maria Antónia Carravilla, 2016. "A semi-continuous MIP model for the irregular strip packing problem," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 712-721, February.
    2. Cherri, Luiz H. & Mundim, Leandro R. & Andretta, Marina & Toledo, Franklina M.B. & Oliveira, José F. & Carravilla, Maria Antónia, 2016. "Robust mixed-integer linear programming models for the irregular strip packing problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 570-583.
    3. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
    4. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    5. Wascher, Gerhard & Hau[ss]ner, Heike & Schumann, Holger, 2007. "An improved typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1109-1130, December.
    6. Yuriy Stoyan & Alexander Pankratov & Tatiana Romanova, 2016. "Cutting and packing problems for irregular objects with continuous rotations: mathematical modelling and non-linear optimization," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(5), pages 786-800, May.
    7. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    8. Dowsland, Kathryn A. & Dowsland, William B., 1995. "Solution approaches to irregular nesting problems," European Journal of Operational Research, Elsevier, vol. 84(3), pages 506-521, August.
    9. Jakobs, Stefan, 1996. "On genetic algorithms for the packing of polygons," European Journal of Operational Research, Elsevier, vol. 88(1), pages 165-181, January.
    10. Pedro Rocha & A. Miguel Gomes & Rui Rodrigues & Franklina M. B. Toledo & Marina Andretta, 2016. "Constraint Aggregation in Non-linear Programming Models for Nesting Problems," Lecture Notes in Economics and Mathematical Systems, in: Raquel J. Fonseca & Gerhard-Wilhelm Weber & João Telhada (ed.), Computational Management Science, edition 1, pages 175-180, Springer.
    11. Miguel Santoro & Felipe Lemos, 2015. "Irregular packing: MILP model based on a polygonal enclosure," Annals of Operations Research, Springer, vol. 235(1), pages 693-707, December.
    12. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    13. N. Chernov & Yu. Stoyan & T. Romanova & A. Pankratov, 2012. "Phi-Functions for 2D Objects Formed by Line Segments and Circular Arcs," Advances in Operations Research, Hindawi, vol. 2012, pages 1-26, May.
    14. Stoyan, Yu. G. & Novozhilova, M. V. & Kartashov, A. V., 1996. "Mathematical model and method of searching for a local extremum for the non-convex oriented polygons allocation problem," European Journal of Operational Research, Elsevier, vol. 92(1), pages 193-210, July.
    15. Dyckhoff, Harald, 1990. "A typology of cutting and packing problems," European Journal of Operational Research, Elsevier, vol. 44(2), pages 145-159, January.
    16. Toledo, Franklina M.B. & Carravilla, Maria Antónia & Ribeiro, Cristina & Oliveira, José F. & Gomes, A. Miguel, 2013. "The Dotted-Board Model: A new MIP model for nesting irregular shapes," International Journal of Production Economics, Elsevier, vol. 145(2), pages 478-487.
    17. Luiz H. Cherri & Adriana C. Cherri & Edilaine M. Soler, 2018. "Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations," Journal of Global Optimization, Springer, vol. 72(1), pages 89-107, September.
    18. Yuriy Stoyan & Tatiana Romanova & Alexander Pankratov & Andrey Chugay, 2015. "Optimized Object Packings Using Quasi-Phi-Functions," Springer Optimization and Its Applications, in: Giorgio Fasano & János D. Pintér (ed.), Optimized Packings with Applications, edition 1, chapter 0, pages 265-293, Springer.
    19. Atamturk, Alper & Nemhauser, George L. & Savelsbergh, Martin W. P., 2000. "Conflict graphs in solving integer programming problems," European Journal of Operational Research, Elsevier, vol. 121(1), pages 40-55, February.
    20. Gokula Vijaykumar Annamalai Vasantha & Ananda Prasanna Jagadeesan & Jonathan Roy Corney & Andrew Lynn & Anupam Agrawal, 2016. "Crowdsourcing solutions to 2D irregular strip packing problems from Internet workers," International Journal of Production Research, Taylor & Francis Journals, vol. 54(14), pages 4104-4125, July.
    21. Alvarez-Valdes, R. & Martinez, A. & Tamarit, J.M., 2013. "A branch & bound algorithm for cutting and packing irregularly shaped pieces," International Journal of Production Economics, Elsevier, vol. 145(2), pages 463-477.
    22. Cherri, Luiz Henrique & Carravilla, Maria Antónia & Ribeiro, Cristina & Toledo, Franklina Maria Bragion, 2019. "Optimality in nesting problems: New constraint programming models and a new global constraint for non-overlap," Operations Research Perspectives, Elsevier, vol. 6(C).
    23. Leandro R. Mundim & Marina Andretta & Maria Antónia Carravilla & José Fernando Oliveira, 2018. "A general heuristic for two-dimensional nesting problems with limited-size containers," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 709-732, January.
    24. Donald Jones, 2014. "A fully general, exact algorithm for nesting irregular shapes," Journal of Global Optimization, Springer, vol. 59(2), pages 367-404, July.
    25. Li, Zhenyu & Milenkovic, Victor, 1995. "Compaction and separation algorithms for non-convex polygons and their applications," European Journal of Operational Research, Elsevier, vol. 84(3), pages 539-561, August.
    26. Y G Stoyan & M V Zlotnik & A M Chugay, 2012. "Solving an optimization packing problem of circles and non-convex polygons with rotations into a multiply connected region," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(3), pages 379-391, March.
    27. J A Bennell & J F Oliveira, 2009. "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 93-105, May.
    28. Luiz Henrique Cherri & Adriana Cristina Cherri & Maria Antónia Carravilla & José Fernando Oliveira & Franklina Maria Bragion Toledo & Andréa Carla Gonçalves Vianna, 2018. "An innovative data structure to handle the geometry of nesting problems," International Journal of Production Research, Taylor & Francis Journals, vol. 56(23), pages 7085-7102, December.
    29. Han, Wei & Bennell, Julia A. & Zhao, Xiaozhou & Song, Xiang, 2013. "Construction heuristics for two-dimensional irregular shape bin packing with guillotine constraints," European Journal of Operational Research, Elsevier, vol. 230(3), pages 495-504.
    30. Elkeran, Ahmed, 2013. "A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering," European Journal of Operational Research, Elsevier, vol. 231(3), pages 757-769.
    31. Bennell, Julia A. & Oliveira, Jose F., 2008. "The geometry of nesting problems: A tutorial," European Journal of Operational Research, Elsevier, vol. 184(2), pages 397-415, January.
    32. Yuriy Stoyan & Alexandr Pankratov & Tatiana Romanova, 2017. "Placement Problems for Irregular Objects: Mathematical Modeling, Optimization and Applications," Springer Optimization and Its Applications, in: Sergiy Butenko & Panos M. Pardalos & Volodymyr Shylo (ed.), Optimization Methods and Applications, pages 521-559, Springer.
    33. Dowsland, Kathryn A. & Vaid, Subodh & Dowsland, William B., 2002. "An algorithm for polygon placement using a bottom-left strategy," European Journal of Operational Research, Elsevier, vol. 141(2), pages 371-381, September.
    34. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    35. P. C. Gilmore & R. E. Gomory, 1965. "Multistage Cutting Stock Problems of Two and More Dimensions," Operations Research, INFORMS, vol. 13(1), pages 94-120, February.
    36. Gomes, A. Miguel & Oliveira, Jose F., 2002. "A 2-exchange heuristic for nesting problems," European Journal of Operational Research, Elsevier, vol. 141(2), pages 359-370, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leao, Aline A.S. & Toledo, Franklina M.B. & Oliveira, José Fernando & Carravilla, Maria Antónia & Alvarez-Valdés, Ramón, 2020. "Irregular packing problems: A review of mathematical models," European Journal of Operational Research, Elsevier, vol. 282(3), pages 803-822.
    2. Umetani, Shunji & Murakami, Shohei, 2022. "Coordinate descent heuristics for the irregular strip packing problem of rasterized shapes," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1009-1026.
    3. Cherri, Luiz Henrique & Carravilla, Maria Antónia & Ribeiro, Cristina & Toledo, Franklina Maria Bragion, 2019. "Optimality in nesting problems: New constraint programming models and a new global constraint for non-overlap," Operations Research Perspectives, Elsevier, vol. 6(C).
    4. Igor Kierkosz & Maciej Łuczak, 2019. "A one-pass heuristic for nesting problems," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 29(1), pages 37-60.
    5. Sato, André Kubagawa & Martins, Thiago Castro & Gomes, Antonio Miguel & Tsuzuki, Marcos Sales Guerra, 2019. "Raster penetration map applied to the irregular packing problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 657-671.
    6. Kimms, Alf & Király, Hédi, 2023. "An extended model formulation for the two-dimensional irregular strip packing problem considering general industry-relevant aspects," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1202-1218.
    7. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    8. Luiz H. Cherri & Adriana C. Cherri & Edilaine M. Soler, 2018. "Mixed integer quadratically-constrained programming model to solve the irregular strip packing problem with continuous rotations," Journal of Global Optimization, Springer, vol. 72(1), pages 89-107, September.
    9. Elkeran, Ahmed, 2013. "A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering," European Journal of Operational Research, Elsevier, vol. 231(3), pages 757-769.
    10. Miguel Santoro & Felipe Lemos, 2015. "Irregular packing: MILP model based on a polygonal enclosure," Annals of Operations Research, Springer, vol. 235(1), pages 693-707, December.
    11. J A Bennell & J F Oliveira, 2009. "A tutorial in irregular shape packing problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 93-105, May.
    12. Chehrazad, Sahar & Roose, Dirk & Wauters, Tony, 2022. "A fast and scalable bottom-left-fill algorithm to solve nesting problems using a semi-discrete representation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 809-826.
    13. Bennell, J.A. & Cabo, M. & Martínez-Sykora, A., 2018. "A beam search approach to solve the convex irregular bin packing problem with guillotine guts," European Journal of Operational Research, Elsevier, vol. 270(1), pages 89-102.
    14. Eunice López-Camacho & Gabriela Ochoa & Hugo Terashima-Marín & Edmund Burke, 2013. "An effective heuristic for the two-dimensional irregular bin packing problem," Annals of Operations Research, Springer, vol. 206(1), pages 241-264, July.
    15. Toledo, Franklina M.B. & Carravilla, Maria Antónia & Ribeiro, Cristina & Oliveira, José F. & Gomes, A. Miguel, 2013. "The Dotted-Board Model: A new MIP model for nesting irregular shapes," International Journal of Production Economics, Elsevier, vol. 145(2), pages 478-487.
    16. Gahm, Christian & Uzunoglu, Aykut & Wahl, Stefan & Ganschinietz, Chantal & Tuma, Axel, 2022. "Applying machine learning for the anticipation of complex nesting solutions in hierarchical production planning," European Journal of Operational Research, Elsevier, vol. 296(3), pages 819-836.
    17. Akang Wang & Christopher L. Hanselman & Chrysanthos E. Gounaris, 2018. "A customized branch-and-bound approach for irregular shape nesting," Journal of Global Optimization, Springer, vol. 71(4), pages 935-955, August.
    18. Qiang Luo & Yunqing Rao, 2022. "Improved Sliding Algorithm for Generating No-Fit Polygon in the 2D Irregular Packing Problem," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    19. Cherri, Luiz H. & Mundim, Leandro R. & Andretta, Marina & Toledo, Franklina M.B. & Oliveira, José F. & Carravilla, Maria Antónia, 2016. "Robust mixed-integer linear programming models for the irregular strip packing problem," European Journal of Operational Research, Elsevier, vol. 253(3), pages 570-583.
    20. Yainier Labrada-Nueva & Martin H. Cruz-Rosales & Juan Manuel Rendón-Mancha & Rafael Rivera-López & Marta Lilia Eraña-Díaz & Marco Antonio Cruz-Chávez, 2021. "Overlap Detection in 2D Amorphous Shapes for Paper Optimization in Digital Printing Presses," Mathematics, MDPI, vol. 9(9), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:313:y:2024:i:1:p:69-91. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.