IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v375y2020ics009630032030045x.html
   My bibliography  Save this article

VOROPACK-D: Real-time disk packing algorithm using Voronoi diagram

Author

Listed:
  • Ryu, Joonghyun
  • Lee, Mokwon
  • Kim, Donguk
  • Kallrath, Josef
  • Sugihara, Kokichi
  • Kim, Deok-Soo

Abstract

The disk packing problem (DPP) is to find an arrangement of circular disks within the smallest possible container without any overlap. We discuss a DPP for polysized disks in a circular container. DPP is known NP-hard and reported algorithms are slow for finding good solutions even with the problem instances of small to moderate sizes. Here we introduce a heuristic algorithm which finds sufficiently good solutions in realtime for small to moderate-sized problem instances and in pseudo-realtime for large problem instances. The proposed algorithm, VOROPACK-D, takes advantage of the spatial reasoning property of Voronoi diagram and finds an approximate solution of DPP in O(nlog n) time with O(n) memory by making incremental placement of n disks in the order of non-increasing disk size, thus called a big-disk-first method. The location of a placement is determined using the Voronoi diagram of already-placed disks. If needed, we further enhance a big-disk-first realtime packing solution using the Shrink-and-Shake algorithm by taking an additional O(Mn2) time for each shrinkage where M ≪ n is the number of protruding disks for each shrinkage. Experimental results show that the proposed algorithm is faster than other reported ones by several orders of magnitude, particularly for large problem instances. Theoretical observations are verified and validated by a thorough experiment. This study suggests that Voronoi diagram might be useful for solving other hard optimization problems related with empty spaces. VOROPACK-D is freely available at Voronoi Diagram Research Center (http://voronoi.hanyang.ac.kr/software/voropack-d).

Suggested Citation

  • Ryu, Joonghyun & Lee, Mokwon & Kim, Donguk & Kallrath, Josef & Sugihara, Kokichi & Kim, Deok-Soo, 2020. "VOROPACK-D: Real-time disk packing algorithm using Voronoi diagram," Applied Mathematics and Computation, Elsevier, vol. 375(C).
  • Handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s009630032030045x
    DOI: 10.1016/j.amc.2020.125076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S009630032030045X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fraser, Hamish J. & George, John A., 1994. "Integrated container loading software for pulp and paper industry," European Journal of Operational Research, Elsevier, vol. 77(3), pages 466-474, September.
    2. Josef Kallrath & Steffen Rebennack, 2014. "Cutting ellipses from area-minimizing rectangles," Journal of Global Optimization, Springer, vol. 59(2), pages 405-437, July.
    3. I Al-Mudahka & M Hifi & R M'Hallah, 2011. "Packing circles in the smallest circle: an adaptive hybrid algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1917-1930, November.
    4. George, John A. & George, Jennifer M. & Lamar, Bruce W., 1995. "Packing different-sized circles into a rectangular container," European Journal of Operational Research, Elsevier, vol. 84(3), pages 693-712, August.
    5. Galiev, Shamil I. & Lisafina, Maria S., 2013. "Linear models for the approximate solution of the problem of packing equal circles into a given domain," European Journal of Operational Research, Elsevier, vol. 230(3), pages 505-514.
    6. E. G. Birgin & R. D. Lobato & J. M. Martínez, 2017. "A nonlinear programming model with implicit variables for packing ellipsoids," Journal of Global Optimization, Springer, vol. 68(3), pages 467-499, July.
    7. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
    8. Mhand Hifi & Rym M'Hallah, 2009. "A Literature Review on Circle and Sphere Packing Problems: Models and Methodologies," Advances in Operations Research, Hindawi, vol. 2009, pages 1-22, July.
    9. Huang Wenqi & Kang Yan, 2004. "A Short Note on a Simple Search Heuristic for the Diskspacking Problem," Annals of Operations Research, Springer, vol. 131(1), pages 101-108, October.
    10. Hifi, M. & M'Hallah, R., 2007. "A dynamic adaptive local search algorithm for the circular packing problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1280-1294, December.
    11. Josef Kallrath, 2017. "Packing ellipsoids into volume-minimizing rectangular boxes," Journal of Global Optimization, Springer, vol. 67(1), pages 151-185, January.
    12. I Al-Mudahka & M Hifi & R M'Hallah, 2011. "Packing circles in the smallest circle: an adaptive hybrid algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1917-1930, November.
    13. Li, Hui & Li, Tianwei, 2018. "Recursive sequences in the Ford sphere packing," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 94-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Josef Kallrath & Joonghyun Ryu & Chanyoung Song & Mokwon Lee & Deok-Soo Kim, 2021. "Near optimal minimal convex hulls of disks," Journal of Global Optimization, Springer, vol. 80(3), pages 551-594, July.
    2. Hu, Zhi-Hua & Zheng, Yu-Xin & Wang, You-Gan, 2022. "Packing computing servers into the vessel of an underwater data center considering cooling efficiency," Applied Energy, Elsevier, vol. 314(C).
    3. Shai Gul & Reuven Cohen, 2021. "Efficient Covering of Thin Convex Domains Using Congruent Discs," Mathematics, MDPI, vol. 9(23), pages 1-10, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Zhanghua & Huang, Wenqi & Lü, Zhipeng, 2013. "Iterated tabu search for the circular open dimension problem," European Journal of Operational Research, Elsevier, vol. 225(2), pages 236-243.
    2. Birgin, E.G. & Lobato, R.D., 2019. "A matheuristic approach with nonlinear subproblems for large-scale packing of ellipsoids," European Journal of Operational Research, Elsevier, vol. 272(2), pages 447-464.
    3. Lai, Xiangjing & Hao, Jin-Kao & Yue, Dong & Lü, Zhipeng & Fu, Zhang-Hua, 2022. "Iterated dynamic thresholding search for packing equal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 299(1), pages 137-153.
    4. A. Pankratov & T. Romanova & I. Litvinchev, 2019. "Packing ellipses in an optimized convex polygon," Journal of Global Optimization, Springer, vol. 75(2), pages 495-522, October.
    5. Zeng, Zhizhong & Yu, Xinguo & He, Kun & Huang, Wenqi & Fu, Zhanghua, 2016. "Iterated Tabu Search and Variable Neighborhood Descent for packing unequal circles into a circular container," European Journal of Operational Research, Elsevier, vol. 250(2), pages 615-627.
    6. López, C.O. & Beasley, J.E., 2016. "A formulation space search heuristic for packing unequal circles in a fixed size circular container," European Journal of Operational Research, Elsevier, vol. 251(1), pages 64-73.
    7. Frank J. Kampas & János D. Pintér & Ignacio Castillo, 2020. "Packing ovals in optimized regular polygons," Journal of Global Optimization, Springer, vol. 77(1), pages 175-196, May.
    8. Romanova, Tatiana & Litvinchev, Igor & Pankratov, Alexander, 2020. "Packing ellipsoids in an optimized cylinder," European Journal of Operational Research, Elsevier, vol. 285(2), pages 429-443.
    9. W Q Huang & Y Li & H Akeb & C M Li, 2005. "Greedy algorithms for packing unequal circles into a rectangular container," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(5), pages 539-548, May.
    10. T. Kubach & A. Bortfeldt & H. Gehring, 2009. "Parallel greedy algorithms for packing unequal circles into a strip or a rectangle," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 17(4), pages 461-477, December.
    11. Birgin, E. G. & Martinez, J. M. & Ronconi, D. P., 2005. "Optimizing the packing of cylinders into a rectangular container: A nonlinear approach," European Journal of Operational Research, Elsevier, vol. 160(1), pages 19-33, January.
    12. Josef Kallrath & Joonghyun Ryu & Chanyoung Song & Mokwon Lee & Deok-Soo Kim, 2021. "Near optimal minimal convex hulls of disks," Journal of Global Optimization, Springer, vol. 80(3), pages 551-594, July.
    13. Castillo, Ignacio & Kampas, Frank J. & Pintér, János D., 2008. "Solving circle packing problems by global optimization: Numerical results and industrial applications," European Journal of Operational Research, Elsevier, vol. 191(3), pages 786-802, December.
    14. Hifi, Mhand & Yousef, Labib, 2019. "A local search-based method for sphere packing problems," European Journal of Operational Research, Elsevier, vol. 274(2), pages 482-500.
    15. Hifi, Mhand & Paschos, Vangelis Th. & Zissimopoulos, Vassilis, 2004. "A simulated annealing approach for the circular cutting problem," European Journal of Operational Research, Elsevier, vol. 159(2), pages 430-448, December.
    16. Wang, Huaiqing & Huang, Wenqi & Zhang, Quan & Xu, Dongming, 2002. "An improved algorithm for the packing of unequal circles within a larger containing circle," European Journal of Operational Research, Elsevier, vol. 141(2), pages 440-453, September.
    17. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.
    18. Tiago Montanher & Arnold Neumaier & Mihály Csaba Markót & Ferenc Domes & Hermann Schichl, 2019. "Rigorous packing of unit squares into a circle," Journal of Global Optimization, Springer, vol. 73(3), pages 547-565, March.
    19. Bortfeldt, Andreas & Wäscher, Gerhard, 2013. "Constraints in container loading – A state-of-the-art review," European Journal of Operational Research, Elsevier, vol. 229(1), pages 1-20.
    20. I Al-Mudahka & M Hifi & R M'Hallah, 2011. "Packing circles in the smallest circle: an adaptive hybrid algorithm," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(11), pages 1917-1930, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:375:y:2020:i:c:s009630032030045x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.