IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v58y2014i3p439-464.html
   My bibliography  Save this article

A continuous characterization of the maximum-edge biclique problem

Author

Listed:
  • Nicolas Gillis
  • François Glineur

Abstract

The problem of finding large complete subgraphs in bipartite graphs (that is, bicliques) is a well-known combinatorial optimization problem referred to as the maximum-edge biclique problem (MBP), and has many applications, e.g., in web community discovery, biological data analysis and text mining. In this paper, we present a new continuous characterization for MBP. Given a bipartite graph $$G$$ , we are able to formulate a continuous optimization problem (namely, an approximate rank-one matrix factorization problem with nonnegativity constraints, R1N for short), and show that there is a one-to-one correspondence between (1) the maximum (i.e., the largest) bicliques of $$G$$ and the global minima of R1N, and (2) the maximal bicliques of $$G$$ (i.e., bicliques not contained in any larger biclique) and the local minima of R1N. We also show that any stationary points of R1N must be close to a biclique of $$G$$ . This allows us to design a new type of biclique finding algorithm based on the application of a block-coordinate descent scheme to R1N. We show that this algorithm, whose algorithmic complexity per iteration is proportional to the number of edges in the graph, is guaranteed to converge to a biclique and that it performs competitively with existing methods on random graphs and text mining datasets. Finally, we show how R1N is closely related to the Motzkin–Strauss formalism for cliques. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Nicolas Gillis & François Glineur, 2014. "A continuous characterization of the maximum-edge biclique problem," Journal of Global Optimization, Springer, vol. 58(3), pages 439-464, March.
  • Handle: RePEc:spr:jglopt:v:58:y:2014:i:3:p:439-464
    DOI: 10.1007/s10898-013-0053-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-013-0053-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-013-0053-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. GILLIS, Nicolas & GLINEUR, François, 2008. "Nonnegative factorization and the maximum edge biclique problem," LIDAM Discussion Papers CORE 2008064, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Peeters, M.J.P., 2003. "The maximum edge biclique problem is NP-complete," Other publications TiSEM 3e340431-37b3-4bc5-9b14-9, Tilburg University, School of Economics and Management.
    3. Luana E. Gibbons & Donald W. Hearn & Panos M. Pardalos & Motakuri V. Ramana, 1997. "Continuous Characterizations of the Maximum Clique Problem," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 754-768, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Melisew Tefera Belachew & Nicolas Gillis, 2017. "Solving the Maximum Clique Problem with Symmetric Rank-One Non-negative Matrix Approximation," Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 279-296, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. GILLIS, Nicolas & GLINEUR, François, 2010. "On the geometric interpretation of the nonnegative rank," LIDAM Discussion Papers CORE 2010051, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. GILLIS, Nicolas & GLINEUR, François, 2010. "Low-rank matrix approximation with weights or missing data is NP-hard," LIDAM Discussion Papers CORE 2010075, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Yuejian Peng & Qingsong Tang & Cheng Zhao, 2015. "On Lagrangians of r-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 812-825, October.
    4. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    5. Sumit Kunnumkal & Kalyan Talluri, 2019. "Choice Network Revenue Management Based on New Tractable Approximations," Transportation Science, INFORMS, vol. 53(6), pages 1591-1608, November.
    6. Alejandra Casado & Sergio Pérez-Peló & Jesús Sánchez-Oro & Abraham Duarte, 2022. "A GRASP algorithm with Tabu Search improvement for solving the maximum intersection of k-subsets problem," Journal of Heuristics, Springer, vol. 28(1), pages 121-146, February.
    7. Yanming Chang & Yuejian Peng & Yuping Yao, 2016. "Connection between a class of polynomial optimization problems and maximum cliques of non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 881-892, February.
    8. Derval, Guillaume & Schaus, Pierre, 2022. "Maximal-Sum submatrix search using a hybrid contraint programming/linear programming approach," European Journal of Operational Research, Elsevier, vol. 297(3), pages 853-865.
    9. Qingsong Tang & Xiangde Zhang & Guoren Wang & Cheng Zhao, 2018. "A continuous characterization of the maximum vertex-weighted clique in hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1250-1260, May.
    10. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    11. Qingsong Tang & Xiangde Zhang & Cheng Zhao & Peng Zhao, 2022. "On the maxima of motzkin-straus programs and cliques of graphs," Journal of Global Optimization, Springer, vol. 84(4), pages 989-1003, December.
    12. Sumit Kunnumkal & Kalyan Talluri, 2012. "A New Compact Linear Programming Formulation for Choice Network Revenue Management," Working Papers 677, Barcelona School of Economics.
    13. Kovalyov, Mikhail Y. & Ng, C.T. & Cheng, T.C. Edwin, 2007. "Fixed interval scheduling: Models, applications, computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 178(2), pages 331-342, April.
    14. Dellepiane, Umberto & Palagi, Laura, 2015. "Using SVM to combine global heuristics for the Standard Quadratic Problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 596-605.
    15. James T. Hungerford & Francesco Rinaldi, 2019. "A General Regularized Continuous Formulation for the Maximum Clique Problem," Management Science, INFORMS, vol. 44(4), pages 1161-1173, November.
    16. Stanislav Busygin & Sergiy Butenko & Panos M. Pardalos, 2002. "A Heuristic for the Maximum Independent Set Problem Based on Optimization of a Quadratic Over a Sphere," Journal of Combinatorial Optimization, Springer, vol. 6(3), pages 287-297, September.
    17. Brendan P. W. Ames, 2015. "Guaranteed Recovery of Planted Cliques and Dense Subgraphs by Convex Relaxation," Journal of Optimization Theory and Applications, Springer, vol. 167(2), pages 653-675, November.
    18. Ran Gu & Xueliang Li & Yuejian Peng & Yongtang Shi, 2016. "Some Motzkin–Straus type results for non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 223-238, January.
    19. GILLIS, Nicolas & GLINEUR, François, 2008. "Nonnegative factorization and the maximum edge biclique problem," LIDAM Discussion Papers CORE 2008064, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Norikazu Takahashi & Jiro Katayama & Masato Seki & Jun’ichi Takeuchi, 2018. "A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 71(1), pages 221-250, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:58:y:2014:i:3:p:439-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.