IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v71y2018i1d10.1007_s10589-018-9997-y.html
   My bibliography  Save this article

A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization

Author

Listed:
  • Norikazu Takahashi

    (Okayama University)

  • Jiro Katayama

    (Kyushu University)

  • Masato Seki

    (Okayama University)

  • Jun’ichi Takeuchi

    (Kyushu University)

Abstract

Multiplicative update rules are a well-known computational method for nonnegative matrix factorization. Depending on the error measure between two matrices, various types of multiplicative update rules have been proposed so far. However, their convergence properties are not fully understood. This paper provides a sufficient condition for a general multiplicative update rule to have the global convergence property in the sense that any sequence of solutions has at least one convergent subsequence and the limit of any convergent subsequence is a stationary point of the optimization problem. Using this condition, it is proved that many of the existing multiplicative update rules have the global convergence property if they are modified slightly so that all variables take positive values. This paper also proposes new multiplicative update rules based on Kullback–Leibler, Gamma, and Rényi divergences. It is shown that these three rules have the global convergence property if the same modification as above is made.

Suggested Citation

  • Norikazu Takahashi & Jiro Katayama & Masato Seki & Jun’ichi Takeuchi, 2018. "A unified global convergence analysis of multiplicative update rules for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 71(1), pages 221-250, September.
  • Handle: RePEc:spr:coopap:v:71:y:2018:i:1:d:10.1007_s10589-018-9997-y
    DOI: 10.1007/s10589-018-9997-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-018-9997-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-018-9997-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. GILLIS, Nicolas & GLINEUR, François, 2008. "Nonnegative factorization and the maximum edge biclique problem," LIDAM Discussion Papers CORE 2008064, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Norikazu Takahashi & Ryota Hibi, 2014. "Global convergence of modified multiplicative updates for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 57(2), pages 417-440, March.
    3. Daniel D. Lee & H. Sebastian Seung, 1999. "Learning the parts of objects by non-negative matrix factorization," Nature, Nature, vol. 401(6755), pages 788-791, October.
    4. Michael W. Berry & Murray Browne, 2005. "Email Surveillance Using Non-negative Matrix Factorization," Computational and Mathematical Organization Theory, Springer, vol. 11(3), pages 249-264, October.
    5. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takehiro Sano & Tsuyoshi Migita & Norikazu Takahashi, 2022. "A novel update rule of HALS algorithm for nonnegative matrix factorization and Zangwill’s global convergence," Journal of Global Optimization, Springer, vol. 84(3), pages 755-781, November.
    2. Norikazu Takahashi & Ryota Hibi, 2014. "Global convergence of modified multiplicative updates for nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 57(2), pages 417-440, March.
    3. Gillis, Nicolas & Glineur, François & Tuyttens, Daniel & Vandaele, Arnaud, 2015. "Heuristics for exact nonnegative matrix factorization," LIDAM Discussion Papers CORE 2015006, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Duy Khuong Nguyen & Tu Bao Ho, 2017. "Accelerated parallel and distributed algorithm using limited internal memory for nonnegative matrix factorization," Journal of Global Optimization, Springer, vol. 68(2), pages 307-328, June.
    5. Flavia Esposito, 2021. "A Review on Initialization Methods for Nonnegative Matrix Factorization: Towards Omics Data Experiments," Mathematics, MDPI, vol. 9(9), pages 1-17, April.
    6. Da Kuang & Sangwoon Yun & Haesun Park, 2015. "SymNMF: nonnegative low-rank approximation of a similarity matrix for graph clustering," Journal of Global Optimization, Springer, vol. 62(3), pages 545-574, July.
    7. Rundong Du & Da Kuang & Barry Drake & Haesun Park, 2017. "DC-NMF: nonnegative matrix factorization based on divide-and-conquer for fast clustering and topic modeling," Journal of Global Optimization, Springer, vol. 68(4), pages 777-798, August.
    8. Jingu Kim & Yunlong He & Haesun Park, 2014. "Algorithms for nonnegative matrix and tensor factorizations: a unified view based on block coordinate descent framework," Journal of Global Optimization, Springer, vol. 58(2), pages 285-319, February.
    9. Srinivas Eswar & Ramakrishnan Kannan & Richard Vuduc & Haesun Park, 2021. "ORCA: Outlier detection and Robust Clustering for Attributed graphs," Journal of Global Optimization, Springer, vol. 81(4), pages 967-989, December.
    10. Del Corso, Gianna M. & Romani, Francesco, 2019. "Adaptive nonnegative matrix factorization and measure comparisons for recommender systems," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 164-179.
    11. P Fogel & C Geissler & P Cotte & G Luta, 2022. "Applying separative non-negative matrix factorization to extra-financial data," Working Papers hal-03689774, HAL.
    12. Xiao-Bai Li & Jialun Qin, 2017. "Anonymizing and Sharing Medical Text Records," Information Systems Research, INFORMS, vol. 28(2), pages 332-352, June.
    13. Naiyang Guan & Lei Wei & Zhigang Luo & Dacheng Tao, 2013. "Limited-Memory Fast Gradient Descent Method for Graph Regularized Nonnegative Matrix Factorization," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-10, October.
    14. Spelta, A. & Pecora, N. & Rovira Kaltwasser, P., 2019. "Identifying Systemically Important Banks: A temporal approach for macroprudential policies," Journal of Policy Modeling, Elsevier, vol. 41(1), pages 197-218.
    15. M. Moghadam & K. Aminian & M. Asghari & M. Parnianpour, 2013. "How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?," Computer Methods in Biomechanics and Biomedical Engineering, Taylor & Francis Journals, vol. 16(3), pages 291-301.
    16. Markovsky, Ivan & Niranjan, Mahesan, 2010. "Approximate low-rank factorization with structured factors," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3411-3420, December.
    17. Paul Fogel & Yann Gaston-Mathé & Douglas Hawkins & Fajwel Fogel & George Luta & S. Stanley Young, 2016. "Applications of a Novel Clustering Approach Using Non-Negative Matrix Factorization to Environmental Research in Public Health," IJERPH, MDPI, vol. 13(5), pages 1-14, May.
    18. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    19. Zhaoyu Xing & Yang Wan & Juan Wen & Wei Zhong, 2024. "GOLFS: feature selection via combining both global and local information for high dimensional clustering," Computational Statistics, Springer, vol. 39(5), pages 2651-2675, July.
    20. Chae, Bongsug (Kevin), 2018. "The Internet of Things (IoT): A Survey of Topics and Trends using Twitter Data and Topic Modeling," 22nd ITS Biennial Conference, Seoul 2018. Beyond the boundaries: Challenges for business, policy and society 190376, International Telecommunications Society (ITS).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:71:y:2018:i:1:d:10.1007_s10589-018-9997-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.