IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v30y2015i3d10.1007_s10878-013-9671-3.html
   My bibliography  Save this article

On Lagrangians of r-uniform hypergraphs

Author

Listed:
  • Yuejian Peng

    (Hunan University)

  • Qingsong Tang

    (Northeastern University
    Jilin University)

  • Cheng Zhao

    (Jilin University
    Indiana State University)

Abstract

A remarkable connection between the order of a maximum clique and the Lagrangian of a graph was established by Motzkin and Straus in Can J Math 17:533–540 (1965). This connection and its extensions were successfully employed in optimization to provide heuristics for the maximum clique number in graphs. It has been also applied in spectral graph theory. Estimating the Lagrangians of hypergraphs has been successfully applied in the course of studying the Turán densities of several hypergraphs as well. It is useful in practice if Motzkin–Straus type results hold for hypergraphs. However, the obvious generalization of Motzkin and Straus’ result to hypergraphs is false. We attempt to explore the relationship between the Lagrangian of a hypergraph and the order of its maximum cliques for hypergraphs when the number of edges is in certain range. In this paper, we give some Motzkin–Straus type results for r-uniform hypergraphs. These results generalize and refine a result of Talbot in Comb Probab Comput 11:199–216 (2002) and a result in Peng and Zhao (Graphs Comb, 29:681–694, 2013).

Suggested Citation

  • Yuejian Peng & Qingsong Tang & Cheng Zhao, 2015. "On Lagrangians of r-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 812-825, October.
  • Handle: RePEc:spr:jcomop:v:30:y:2015:i:3:d:10.1007_s10878-013-9671-3
    DOI: 10.1007/s10878-013-9671-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-013-9671-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-013-9671-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luana E. Gibbons & Donald W. Hearn & Panos M. Pardalos & Motakuri V. Ramana, 1997. "Continuous Characterizations of the Maximum Clique Problem," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 754-768, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingsong Tang & Yuejian Peng & Xiangde Zhang & Cheng Zhao, 2017. "On Motzkin–Straus type results for non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 504-521, August.
    2. Liying Kang & Lele Liu & Erfang Shan, 2019. "The eigenvectors to the p-spectral radius of general hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 556-569, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanming Chang & Yuejian Peng & Yuping Yao, 2016. "Connection between a class of polynomial optimization problems and maximum cliques of non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 881-892, February.
    2. Qingsong Tang & Xiangde Zhang & Guoren Wang & Cheng Zhao, 2018. "A continuous characterization of the maximum vertex-weighted clique in hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1250-1260, May.
    3. Qingsong Tang & Xiangde Zhang & Cheng Zhao & Peng Zhao, 2022. "On the maxima of motzkin-straus programs and cliques of graphs," Journal of Global Optimization, Springer, vol. 84(4), pages 989-1003, December.
    4. Kovalyov, Mikhail Y. & Ng, C.T. & Cheng, T.C. Edwin, 2007. "Fixed interval scheduling: Models, applications, computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 178(2), pages 331-342, April.
    5. Dellepiane, Umberto & Palagi, Laura, 2015. "Using SVM to combine global heuristics for the Standard Quadratic Problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 596-605.
    6. James T. Hungerford & Francesco Rinaldi, 2019. "A General Regularized Continuous Formulation for the Maximum Clique Problem," Management Science, INFORMS, vol. 44(4), pages 1161-1173, November.
    7. Stanislav Busygin & Sergiy Butenko & Panos M. Pardalos, 2002. "A Heuristic for the Maximum Independent Set Problem Based on Optimization of a Quadratic Over a Sphere," Journal of Combinatorial Optimization, Springer, vol. 6(3), pages 287-297, September.
    8. Ran Gu & Xueliang Li & Yuejian Peng & Yongtang Shi, 2016. "Some Motzkin–Straus type results for non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 223-238, January.
    9. Yanping Sun & Qingsong Tang & Cheng Zhao & Yuejian Peng, 2014. "On the Largest Graph-Lagrangian of 3-Graphs with Fixed Number of Edges," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 57-79, October.
    10. Hager, William W. & Hungerford, James T., 2015. "Continuous quadratic programming formulations of optimization problems on graphs," European Journal of Operational Research, Elsevier, vol. 240(2), pages 328-337.
    11. Qingsong Tang & Yuejian Peng & Xiangde Zhang & Cheng Zhao, 2014. "On Graph-Lagrangians of Hypergraphs Containing Dense Subgraphs," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 31-56, October.
    12. Qingsong Tang & Yuejian Peng & Xiangde Zhang & Cheng Zhao, 2017. "On Motzkin–Straus type results for non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 504-521, August.
    13. Immanuel M. Bomze & Michael Kahr & Markus Leitner, 2021. "Trust Your Data or Not—StQP Remains StQP: Community Detection via Robust Standard Quadratic Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 301-316, February.
    14. Vargas, Luis Felipe & Laurent, Monique, 2023. "Copositive matrices, sums of squares and the stability number of a graph," Other publications TiSEM 8e471691-a452-4ee5-9f88-8, Tilburg University, School of Economics and Management.
    15. Zehui Jia & Xue Gao & Xingju Cai & Deren Han, 2021. "Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 1-25, January.
    16. Jacek Gondzio & E. Alper Yıldırım, 2021. "Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations," Journal of Global Optimization, Springer, vol. 81(2), pages 293-321, October.
    17. Nicolas Gillis & François Glineur, 2014. "A continuous characterization of the maximum-edge biclique problem," Journal of Global Optimization, Springer, vol. 58(3), pages 439-464, March.
    18. Riccardo Bisori & Matteo Lapucci & Marco Sciandrone, 2022. "A study on sequential minimal optimization methods for standard quadratic problems," 4OR, Springer, vol. 20(4), pages 685-712, December.
    19. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2018. "A nonconvex quadratic optimization approach to the maximum edge weight clique problem," Journal of Global Optimization, Springer, vol. 72(2), pages 219-240, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:30:y:2015:i:3:d:10.1007_s10878-013-9671-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.