IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v241y2015i3p596-605.html
   My bibliography  Save this article

Using SVM to combine global heuristics for the Standard Quadratic Problem

Author

Listed:
  • Dellepiane, Umberto
  • Palagi, Laura

Abstract

The Standard Quadratic Problem (StQP) is an NP-hard problem with many local minimizers (stationary points). In the literature, heuristics based on unconstrained continuous non-convex formulations have been proposed (Bomze & Palagi, 2005; Bomze, Grippo, & Palagi, 2012) but none dominates the other in terms of best value found. Following (Cassioli, DiLorenzo, Locatelli, Schoen, & Sciandrone, 2012) we propose to use Support Vector Machines (SVMs) to define a multistart global strategy which selects the “best” heuristic. We test our method on StQP arising from the Maximum Clique Problem on a graph which is a challenging combinatorial problem. We use as benchmark the clique problems in the DIMACS challenge.

Suggested Citation

  • Dellepiane, Umberto & Palagi, Laura, 2015. "Using SVM to combine global heuristics for the Standard Quadratic Problem," European Journal of Operational Research, Elsevier, vol. 241(3), pages 596-605.
  • Handle: RePEc:eee:ejores:v:241:y:2015:i:3:p:596-605
    DOI: 10.1016/j.ejor.2014.09.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714007930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.09.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Immanuel Bomze & Luigi Grippo & Laura Palagi, 2012. "Unconstrained formulation of standard quadratic optimization problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 35-51, April.
    2. C. J. Lin & S. Lucidi & L. Palagi & A. Risi & M. Sciandrone, 2009. "Decomposition Algorithm Model for Singly Linearly-Constrained Problems Subject to Lower and Upper Bounds," Journal of Optimization Theory and Applications, Springer, vol. 141(1), pages 107-126, April.
    3. A. Cassioli & D. Di Lorenzo & M. Locatelli & F. Schoen & M. Sciandrone, 2012. "Machine learning for global optimization," Computational Optimization and Applications, Springer, vol. 51(1), pages 279-303, January.
    4. Luana E. Gibbons & Donald W. Hearn & Panos M. Pardalos & Motakuri V. Ramana, 1997. "Continuous Characterizations of the Maximum Clique Problem," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 754-768, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Riccardo Bisori & Matteo Lapucci & Marco Sciandrone, 2022. "A study on sequential minimal optimization methods for standard quadratic problems," 4OR, Springer, vol. 20(4), pages 685-712, December.
    2. Pedro Duarte Silva, A., 2017. "Optimization approaches to Supervised Classification," European Journal of Operational Research, Elsevier, vol. 261(2), pages 772-788.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo Bisori & Matteo Lapucci & Marco Sciandrone, 2022. "A study on sequential minimal optimization methods for standard quadratic problems," 4OR, Springer, vol. 20(4), pages 685-712, December.
    2. Qingsong Tang & Xiangde Zhang & Cheng Zhao & Peng Zhao, 2022. "On the maxima of motzkin-straus programs and cliques of graphs," Journal of Global Optimization, Springer, vol. 84(4), pages 989-1003, December.
    3. Locatelli, Marco & Schoen, Fabio, 2012. "Local search based heuristics for global optimization: Atomic clusters and beyond," European Journal of Operational Research, Elsevier, vol. 222(1), pages 1-9.
    4. Zehui Jia & Xue Gao & Xingju Cai & Deren Han, 2021. "Local Linear Convergence of the Alternating Direction Method of Multipliers for Nonconvex Separable Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 188(1), pages 1-25, January.
    5. Qingsong Tang & Yuejian Peng & Xiangde Zhang & Cheng Zhao, 2014. "On Graph-Lagrangians of Hypergraphs Containing Dense Subgraphs," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 31-56, October.
    6. Giampaolo Liuzzi & Laura Palagi & Mauro Piacentini, 2010. "On the convergence of a Jacobi-type algorithm for Singly Linearly-Constrained Problems Subject to simple Bounds," DIS Technical Reports 2010-01, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    7. Immanuel Bomze & Chen Ling & Liqun Qi & Xinzhen Zhang, 2012. "Standard bi-quadratic optimization problems and unconstrained polynomial reformulations," Journal of Global Optimization, Springer, vol. 52(4), pages 663-687, April.
    8. Yuejian Peng & Qingsong Tang & Cheng Zhao, 2015. "On Lagrangians of r-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 812-825, October.
    9. Jacek Gondzio & E. Alper Yıldırım, 2021. "Global solutions of nonconvex standard quadratic programs via mixed integer linear programming reformulations," Journal of Global Optimization, Springer, vol. 81(2), pages 293-321, October.
    10. Nicolas Gillis & François Glineur, 2014. "A continuous characterization of the maximum-edge biclique problem," Journal of Global Optimization, Springer, vol. 58(3), pages 439-464, March.
    11. Kovalyov, Mikhail Y. & Ng, C.T. & Cheng, T.C. Edwin, 2007. "Fixed interval scheduling: Models, applications, computational complexity and algorithms," European Journal of Operational Research, Elsevier, vol. 178(2), pages 331-342, April.
    12. Seyedmohammadhossein Hosseinian & Dalila B. M. M. Fontes & Sergiy Butenko, 2018. "A nonconvex quadratic optimization approach to the maximum edge weight clique problem," Journal of Global Optimization, Springer, vol. 72(2), pages 219-240, October.
    13. James T. Hungerford & Francesco Rinaldi, 2019. "A General Regularized Continuous Formulation for the Maximum Clique Problem," Management Science, INFORMS, vol. 44(4), pages 1161-1173, November.
    14. Paul Tseng & Sangwoon Yun, 2010. "A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training," Computational Optimization and Applications, Springer, vol. 47(2), pages 179-206, October.
    15. Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
    16. Qingsong Tang & Yuejian Peng & Xiangde Zhang & Cheng Zhao, 2017. "On Motzkin–Straus type results for non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 504-521, August.
    17. Wang, Xing & Tao, Chang-qi & Tang, Guo-ji, 2015. "A class of differential quadratic programming problems," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 369-377.
    18. Stanislav Busygin & Sergiy Butenko & Panos M. Pardalos, 2002. "A Heuristic for the Maximum Independent Set Problem Based on Optimization of a Quadratic Over a Sphere," Journal of Combinatorial Optimization, Springer, vol. 6(3), pages 287-297, September.
    19. Immanuel M. Bomze & Michael Kahr & Markus Leitner, 2021. "Trust Your Data or Not—StQP Remains StQP: Community Detection via Robust Standard Quadratic Optimization," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 301-316, February.
    20. Amir Beck, 2014. "The 2-Coordinate Descent Method for Solving Double-Sided Simplex Constrained Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 892-919, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:241:y:2015:i:3:p:596-605. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.