IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v35y2018i4d10.1007_s10878-018-0259-9.html
   My bibliography  Save this article

A continuous characterization of the maximum vertex-weighted clique in hypergraphs

Author

Listed:
  • Qingsong Tang

    (Northeastern University)

  • Xiangde Zhang

    (Northeastern University)

  • Guoren Wang

    (School of Computer Science and Engineering)

  • Cheng Zhao

    (Indiana State University)

Abstract

For a simple graph G on n vertices with adjacency matrix A, Motzkin and Strauss established a remarkable connection between the clique number and the global maximum value of the quadratic programm: $$\textit{max}\{ \mathbf {x}^T A \mathbf {x}\}$$ max { x T A x } on the standard simplex: $$\{\sum _{i=1}^{n} x_i =1, x_i \ge 0 \}$$ { ∑ i = 1 n x i = 1 , x i ≥ 0 } . In Gibbons et al. (Math Oper Res 122:754–768, 1997), an extension of the Motzkin–Straus formulation was provided for the vertex-weighted clique number of a graph. In this paper, we provide a continuous characterization of the maximum vertex-weighted clique problem for vertex-weighted uniform hypergraphs.

Suggested Citation

  • Qingsong Tang & Xiangde Zhang & Guoren Wang & Cheng Zhao, 2018. "A continuous characterization of the maximum vertex-weighted clique in hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 35(4), pages 1250-1260, May.
  • Handle: RePEc:spr:jcomop:v:35:y:2018:i:4:d:10.1007_s10878-018-0259-9
    DOI: 10.1007/s10878-018-0259-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-018-0259-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-018-0259-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luana E. Gibbons & Donald W. Hearn & Panos M. Pardalos & Motakuri V. Ramana, 1997. "Continuous Characterizations of the Maximum Clique Problem," Mathematics of Operations Research, INFORMS, vol. 22(3), pages 754-768, August.
    2. David G. Luenberger & Yinyu Ye, 2008. "Linear and Nonlinear Programming," International Series in Operations Research and Management Science, Springer, edition 0, number 978-0-387-74503-9, March.
    3. de Klerk, E. & Laurent, M. & Parrilo, P., 2006. "A PTAS for the minimization of polynomials of fixed degree over the simplex," Other publications TiSEM 603897c9-179e-43e4-9e83-6, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qingsong Tang & Xiangde Zhang & Cheng Zhao & Peng Zhao, 2022. "On the maxima of motzkin-straus programs and cliques of graphs," Journal of Global Optimization, Springer, vol. 84(4), pages 989-1003, December.
    2. Shahmohammadi, Ali & Sioshansi, Ramteen & Conejo, Antonio J. & Afsharnia, Saeed, 2018. "Market equilibria and interactions between strategic generation, wind, and storage," Applied Energy, Elsevier, vol. 220(C), pages 876-892.
    3. Alp Atakan & Mehmet Ekmekci & Ludovic Renou, 2021. "Cross-verification and Persuasive Cheap Talk," Papers 2102.13562, arXiv.org, revised Apr 2021.
    4. Arthur Medeiros & Thales Ramos & José Tavares de Oliveira & Manoel F. Medeiros Júnior, 2020. "Direct Voltage Control of a Doubly Fed Induction Generator by Means of Optimal Strategy," Energies, MDPI, vol. 13(3), pages 1-28, February.
    5. Ivorra, Benjamin & Mohammadi, Bijan & Manuel Ramos, Angel, 2015. "A multi-layer line search method to improve the initialization of optimization algorithms," European Journal of Operational Research, Elsevier, vol. 247(3), pages 711-720.
    6. Tanaka, Ken'ichiro & Toda, Alexis Akira, 2015. "Discretizing Distributions with Exact Moments: Error Estimate and Convergence Analysis," University of California at San Diego, Economics Working Paper Series qt7g23r5kh, Department of Economics, UC San Diego.
    7. Ashrafi, M. & Khanjani, M.J. & Fadaei-Kermani, E. & Barani, G.A., 2015. "Farm drainage channel network optimization by improved modified minimal spanning tree," Agricultural Water Management, Elsevier, vol. 161(C), pages 1-8.
    8. Sergey Badikov & Antoine Jacquier & Daphne Qing Liu & Patrick Roome, 2016. "No-arbitrage bounds for the forward smile given marginals," Papers 1603.06389, arXiv.org, revised Oct 2016.
    9. Szidarovszky, Ferenc & Luo, Yi, 2014. "Incorporating risk seeking attitude into defense strategy," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 104-109.
    10. Giorgio, 2019. "On Second-Order Optimality Conditions in Smooth Nonlinear Programming Problems," DEM Working Papers Series 171, University of Pavia, Department of Economics and Management.
    11. Qingsong Tang & Yuejian Peng & Xiangde Zhang & Cheng Zhao, 2014. "On Graph-Lagrangians of Hypergraphs Containing Dense Subgraphs," Journal of Optimization Theory and Applications, Springer, vol. 163(1), pages 31-56, October.
    12. Csaba I. Fábián, 2021. "Gaining traction: on the convergence of an inner approximation scheme for probability maximization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(2), pages 491-519, June.
    13. Yuejian Peng & Qingsong Tang & Cheng Zhao, 2015. "On Lagrangians of r-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 812-825, October.
    14. de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
    15. Bouslah, B. & Gharbi, A. & Pellerin, R., 2016. "Integrated production, sampling quality control and maintenance of deteriorating production systems with AOQL constraint," Omega, Elsevier, vol. 61(C), pages 110-126.
    16. Rafał Wiśniowski & Krzysztof Skrzypaszek & Tomasz Małachowski, 2020. "Selection of a Suitable Rheological Model for Drilling Fluid Using Applied Numerical Methods," Energies, MDPI, vol. 13(12), pages 1-17, June.
    17. Martins Barros, Rafael & Guimarães Lage, Guilherme & de Andrade Lira Rabêlo, Ricardo, 2022. "Sequencing paths of optimal control adjustments determined by the optimal reactive dispatch via Lagrange multiplier sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 301(1), pages 373-385.
    18. Yuichi Takano & Renata Sotirov, 2012. "A polynomial optimization approach to constant rebalanced portfolio selection," Computational Optimization and Applications, Springer, vol. 52(3), pages 645-666, July.
    19. Enrique I. Acuña & Ian S. Lowndes, 2014. "A Review of Primary Mine Ventilation System Optimization," Interfaces, INFORMS, vol. 44(2), pages 163-175, April.
    20. Qingsong Tang & Yuejian Peng & Xiangde Zhang & Cheng Zhao, 2017. "On Motzkin–Straus type results for non-uniform hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 34(2), pages 504-521, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:35:y:2018:i:4:d:10.1007_s10878-018-0259-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.