IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v78y2021i2d10.1007_s10589-020-00250-7.html
   My bibliography  Save this article

Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization

Author

Listed:
  • Alain B. Zemkoho

    (University of Southampton)

  • Shenglong Zhou

    (University of Southampton)

Abstract

The Karush–Kuhn–Tucker and value function (lower-level value function, to be precise) reformulations are the most common single-level transformations of the bilevel optimization problem. So far, these reformulations have either been studied independently or as a joint optimization problem in an attempt to take advantage of the best properties from each model. To the best of our knowledge, these reformulations have not yet been compared in the existing literature. This paper is a first attempt towards establishing whether one of these reformulations is best at solving a given class of the optimistic bilevel optimization problem. We design a comparison framework, which seems fair, considering the theoretical properties of these reformulations. This work reveals that although none of the models seems to particularly dominate the other from the theoretical point of view, the value function reformulation seems to numerically outperform the Karush–Kuhn–Tucker reformulation on a Newton-type algorithm. The computational experiments here are mostly based on test problems from the Bilevel Optimization LIBrary (BOLIB).

Suggested Citation

  • Alain B. Zemkoho & Shenglong Zhou, 2021. "Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(2), pages 625-674, March.
  • Handle: RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00250-7
    DOI: 10.1007/s10589-020-00250-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00250-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00250-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stephan Dempe & Alain B. Zemkoho, 2011. "The Generalized Mangasarian-Fromowitz Constraint Qualification and Optimality Conditions for Bilevel Programs," Journal of Optimization Theory and Applications, Springer, vol. 148(1), pages 46-68, January.
    2. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    3. Lorenzo Lampariello & Simone Sagratella, 2017. "A Bridge Between Bilevel Programs and Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 613-635, August.
    4. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    5. Shenglong Zhou & Alain B. Zemkoho & Andrey Tin, 2020. "BOLIB: Bilevel Optimization LIBrary of Test Problems," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 563-580, Springer.
    6. Liqun Qi & Houyuan Jiang, 1997. "Semismooth Karush-Kuhn-Tucker Equations and Convergence Analysis of Newton and Quasi-Newton Methods for Solving these Equations," Mathematics of Operations Research, INFORMS, vol. 22(2), pages 301-325, May.
    7. Mengwei Xu & Jane Ye, 2014. "A smoothing augmented Lagrangian method for solving simple bilevel programs," Computational Optimization and Applications, Springer, vol. 59(1), pages 353-377, October.
    8. Liqun Qi, 1993. "Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 227-244, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qingna Li & Zhen Li & Alain Zemkoho, 2022. "Bilevel hyperparameter optimization for support vector classification: theoretical analysis and a solution method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 315-350, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jörg Fliege & Andrey Tin & Alain Zemkoho, 2021. "Gauss–Newton-type methods for bilevel optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 793-824, April.
    2. Lorenzo Lampariello & Simone Sagratella, 2017. "A Bridge Between Bilevel Programs and Nash Games," Journal of Optimization Theory and Applications, Springer, vol. 174(2), pages 613-635, August.
    3. Dong-Hui Li & Liqun Qi & Judy Tam & Soon-Yi Wu, 2004. "A Smoothing Newton Method for Semi-Infinite Programming," Journal of Global Optimization, Springer, vol. 30(2), pages 169-194, November.
    4. Francesco Cesarone & Lorenzo Lampariello & Davide Merolla & Jacopo Maria Ricci & Simone Sagratella & Valerio Giuseppe Sasso, 2023. "A bilevel approach to ESG multi-portfolio selection," Computational Management Science, Springer, vol. 20(1), pages 1-23, December.
    5. Lorenzo Lampariello & Christoph Neumann & Jacopo M. Ricci & Simone Sagratella & Oliver Stein, 2020. "An explicit Tikhonov algorithm for nested variational inequalities," Computational Optimization and Applications, Springer, vol. 77(2), pages 335-350, November.
    6. Lampariello, Lorenzo & Neumann, Christoph & Ricci, Jacopo M. & Sagratella, Simone & Stein, Oliver, 2021. "Equilibrium selection for multi-portfolio optimization," European Journal of Operational Research, Elsevier, vol. 295(1), pages 363-373.
    7. Shouqiang Du & Liyuan Cui & Yuanyuan Chen & Yimin Wei, 2022. "Stochastic Tensor Complementarity Problem with Discrete Distribution," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 912-929, March.
    8. Gaoxi Li & Zhongping Wan, 2018. "On Bilevel Programs with a Convex Lower-Level Problem Violating Slater’s Constraint Qualification," Journal of Optimization Theory and Applications, Springer, vol. 179(3), pages 820-837, December.
    9. Lorenzo Lampariello & Gianluca Priori & Simone Sagratella, 2022. "On the solution of monotone nested variational inequalities," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 96(3), pages 421-446, December.
    10. L. W. Zhang & Z. Q. Xia, 2001. "Newton-Type Methods for Quasidifferentiable Equations," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 439-456, February.
    11. Chen Ling & Hongxia Yin & Guanglu Zhou, 2011. "A smoothing Newton-type method for solving the L 2 spectral estimation problem with lower and upper bounds," Computational Optimization and Applications, Springer, vol. 50(2), pages 351-378, October.
    12. Z. Wei & L. Qi & X. Chen, 2003. "An SQP-Type Method and Its Application in Stochastic Programs," Journal of Optimization Theory and Applications, Springer, vol. 116(1), pages 205-228, January.
    13. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    14. Lorenzo Lampariello & Simone Sagratella, 2015. "It is a matter of hierarchy: a Nash equilibrium problem perspective on bilevel programming," DIAG Technical Reports 2015-07, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    15. John Duggan & Tasos Kalandrakis, 2011. "A Newton collocation method for solving dynamic bargaining games," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 36(3), pages 611-650, April.
    16. Liang Chen & Anping Liao, 2020. "On the Convergence Properties of a Second-Order Augmented Lagrangian Method for Nonlinear Programming Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 187(1), pages 248-265, October.
    17. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    18. Ralf Münnich & Ekkehard Sachs & Matthias Wagner, 2012. "Calibration of estimator-weights via semismooth Newton method," Journal of Global Optimization, Springer, vol. 52(3), pages 471-485, March.
    19. Vasileios Kitsikoudis & Pierre Archambeau & Benjamin Dewals & Estanislao Pujades & Philippe Orban & Alain Dassargues & Michel Pirotton & Sebastien Erpicum, 2020. "Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics," Energies, MDPI, vol. 13(14), pages 1-16, July.
    20. Y. Gao, 2006. "Newton Methods for Quasidifferentiable Equations and Their Convergence," Journal of Optimization Theory and Applications, Springer, vol. 131(3), pages 417-428, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:2:d:10.1007_s10589-020-00250-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.