IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v41y2021i4d10.1007_s10878-021-00714-4.html
   My bibliography  Save this article

Single-machine scheduling with periodic due dates to minimize the total earliness and tardy penalty

Author

Listed:
  • Byung-Cheon Choi

    (Chungnam National University)

  • Myoung-Ju Park

    (Kyung Hee University)

Abstract

We consider a single-machine scheduling problem such that the due dates are assigned to each job depending on its order, and the lengths of the intervals between consecutive due dates are identical. The objective is to minimize the total penalty for the earliness and tardiness of each job. The early penalty proportionally increases according to the earliness amount, while the tardy penalty increases according to the step function. We show that the problem is strongly NP-hard, and furthermore, polynomially solvable if the two types of processing times exist.

Suggested Citation

  • Byung-Cheon Choi & Myoung-Ju Park, 2021. "Single-machine scheduling with periodic due dates to minimize the total earliness and tardy penalty," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 781-793, May.
  • Handle: RePEc:spr:jcomop:v:41:y:2021:i:4:d:10.1007_s10878-021-00714-4
    DOI: 10.1007/s10878-021-00714-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00714-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00714-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas G. Hall & 'Maseka Lesaoana & Chris N. Potts, 2001. "Scheduling with Fixed Delivery Dates," Operations Research, INFORMS, vol. 49(1), pages 134-144, February.
    2. Byung-Cheon Choi & Myoung-Ju Park, 2018. "Just-In-Time Scheduling with Generalized Due Dates and Identical Due Date Intervals," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-13, December.
    3. Nicholas G. Hall & Wieslaw Kubiak & Suresh P. Sethi, 1991. "Earliness–Tardiness Scheduling Problems, II: Deviation of Completion Times About a Restrictive Common Due Date," Operations Research, INFORMS, vol. 39(5), pages 847-856, October.
    4. Nicholas G. Hall & Marc E. Posner, 1991. "Earliness-Tardiness Scheduling Problems, I: Weighted Deviation of Completion Times About a Common Due Date," Operations Research, INFORMS, vol. 39(5), pages 836-846, October.
    5. Feng Li & Zhi-Long Chen & Zhi-Long Chen, 2017. "Integrated Production, Inventory and Delivery Problems: Complexity and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 232-250, May.
    6. Hall, Nicholas G. & Sethi, Suresh P. & Sriskandarajah, Chelliah, 1991. "On the complexity of generalized due date scheduling problems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 100-109, March.
    7. Sachchida Nand Chaurasia & Shyam Sundar & Alok Singh, 2017. "Hybrid metaheuristic approaches for the single machine total stepwise tardiness problem with release dates," Operational Research, Springer, vol. 17(1), pages 275-295, April.
    8. Han, Dongya & Yang, Yongjian & Wang, Dujuan & Cheng, T.C.E. & Yin, Yunqiang, 2019. "Integrated production, inventory, and outbound distribution operations with fixed departure times in a three-stage supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 125(C), pages 334-347.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Julong & Liu, Zhixue & Li, Feng, 2024. "Integrated production and transportation scheduling problem under nonlinear cost structures," European Journal of Operational Research, Elsevier, vol. 313(3), pages 883-904.
    2. Feng Li & Zhi-Long Chen & Zhi-Long Chen, 2017. "Integrated Production, Inventory and Delivery Problems: Complexity and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 232-250, May.
    3. Gordon, Valery & Proth, Jean-Marie & Chu, Chengbin, 2002. "A survey of the state-of-the-art of common due date assignment and scheduling research," European Journal of Operational Research, Elsevier, vol. 139(1), pages 1-25, May.
    4. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    5. Byung-Cheon Choi & Myoung-Ju Park, 2018. "Just-In-Time Scheduling with Generalized Due Dates and Identical Due Date Intervals," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(06), pages 1-13, December.
    6. Philip Kaminsky & Onur Kaya, 2008. "Scheduling and due‐date quotation in a make‐to‐order supply chain," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(5), pages 444-458, August.
    7. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    8. Ali Kordmostafapour & Javad Rezaeian & Iraj Mahdavi & Mahdi Yar Farjad, 2022. "Scheduling unrelated parallel machine problem with multi-mode processing times and batch delivery cost," OPSEARCH, Springer;Operational Research Society of India, vol. 59(4), pages 1438-1470, December.
    9. N. V. R. Mahadev & Aleksandar Pekeč & Fred S. Roberts, 1998. "On the Meaningfulness of Optimal Solutions to Scheduling Problems: Can an Optimal Solution be Nonoptimal?," Operations Research, INFORMS, vol. 46(3-supplem), pages 120-134, June.
    10. Mosheiov, Gur & Shadmon, Michal, 2001. "Minmax earliness-tardiness costs with unit processing time jobs," European Journal of Operational Research, Elsevier, vol. 130(3), pages 638-652, May.
    11. Zhi-Long Chen, 1997. "Scheduling with batch setup times and earliness-tardiness penalties," European Journal of Operational Research, Elsevier, vol. 96(3), pages 518-537, February.
    12. Francis Sourd, 2009. "New Exact Algorithms for One-Machine Earliness-Tardiness Scheduling," INFORMS Journal on Computing, INFORMS, vol. 21(1), pages 167-175, February.
    13. Mosheiov, Gur, 2004. "Simultaneous minimization of total completion time and total deviation of job completion times," European Journal of Operational Research, Elsevier, vol. 157(2), pages 296-306, September.
    14. Lin, Shih-Wei & Chou, Shuo-Yan & Ying, Kuo-Ching, 2007. "A sequential exchange approach for minimizing earliness-tardiness penalties of single-machine scheduling with a common due date," European Journal of Operational Research, Elsevier, vol. 177(2), pages 1294-1301, March.
    15. Ventura, Jose A. & Kim, Daecheol & Garriga, Frederic, 2002. "Single machine earliness-tardiness scheduling with resource-dependent release dates," European Journal of Operational Research, Elsevier, vol. 142(1), pages 52-69, October.
    16. Shabtay, Dvir & Mosheiov, Gur & Oron, Daniel, 2022. "Single machine scheduling with common assignable due date/due window to minimize total weighted early and late work," European Journal of Operational Research, Elsevier, vol. 303(1), pages 66-77.
    17. Hans Kellerer & Vitaly A. Strusevich, 2016. "Optimizing the half-product and related quadratic Boolean functions: approximation and scheduling applications," Annals of Operations Research, Springer, vol. 240(1), pages 39-94, May.
    18. Chen, Wei-Yang & Sheen, Gwo-Ji, 2007. "Single-machine scheduling with multiple performance measures: Minimizing job-dependent earliness and tardiness subject to the number of tardy jobs," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 214-229, September.
    19. Ji-Bo Wang & Bo Cui & Ping Ji & Wei-Wei Liu, 2021. "Research on single-machine scheduling with position-dependent weights and past-sequence-dependent delivery times," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 290-303, February.
    20. Helmut A. Sedding, 2020. "Scheduling jobs with a V-shaped time-dependent processing time," Journal of Scheduling, Springer, vol. 23(6), pages 751-768, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:41:y:2021:i:4:d:10.1007_s10878-021-00714-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.