IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v49y2001i1p134-144.html
   My bibliography  Save this article

Scheduling with Fixed Delivery Dates

Author

Listed:
  • Nicholas G. Hall

    (Department of Management Sciences, Fisher College of Business, The Ohio State University, Columbus, Ohio 43210-1144)

  • 'Maseka Lesaoana

    (Labour Market Information & Statistics, Department of Labour, Private Bag X117, Pretoria, South Africa 0001)

  • Chris N. Potts

    (Faculty of Mathematical Studies, University of Southampton, Highfield, Southampton, United Kingdom, SO9 5N4)

Abstract

In most classical scheduling models, it is assumed that a job is dispatched to a customer immediately after its processing completes. In many practical situations, however, a set of delivery dates may be fixed before any jobs are processed. This is particularly relevant where delivery is an expensive or complicated operation, for example, as with heavy machinery. A similar situation arises where customers find deliveries disruptive and thus require them to be made within a limited time interval that repeats periodically. A third possibility is that a periodic business function, for example, the supplier's billing cycle, effectively defines a delivery date, and includes all jobs that have been completed since the previous billing cycle. These situations are not adequately represented by classical scheduling models. We consider a variety of deterministic scheduling problems in which a job is dispatched to a customer at the earliest fixed delivery date that is no earlier than the completion time of its processing. Problems where the number of delivery dates is constant, and others where it is specified as part of data input, are studied. For almost all problems considered, we either provide an efficient algorithm or establish that such an algorithm is unlikely to exist. By doing so, we permit comparisons between the solvability of these fixed delivery date problems and of the corresponding classical scheduling problems.

Suggested Citation

  • Nicholas G. Hall & 'Maseka Lesaoana & Chris N. Potts, 2001. "Scheduling with Fixed Delivery Dates," Operations Research, INFORMS, vol. 49(1), pages 134-144, February.
  • Handle: RePEc:inm:oropre:v:49:y:2001:i:1:p:134-144
    DOI: 10.1287/opre.49.1.134.11192
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.49.1.134.11192
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.49.1.134.11192?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. E. L. Lawler & J. K. Lenstra & A. H. G. Rinnooy Kan, 1981. "Minimizing Maximum Lateness in a Two-Machine Open Shop," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 153-158, February.
    2. E. L. Lawler & J. M. Moore, 1969. "A Functional Equation and its Application to Resource Allocation and Sequencing Problems," Management Science, INFORMS, vol. 16(1), pages 77-84, September.
    3. D. P. Williamson & L. A. Hall & J. A. Hoogeveen & C. A. J. Hurkens & J. K. Lenstra & S. V. Sevast'janov & D. B. Shmoys, 1997. "Short Shop Schedules," Operations Research, INFORMS, vol. 45(2), pages 288-294, April.
    4. Hirofumi Matsuo, 1988. "The Weighted Total Tardiness Problem with Fixed Shipping Times and Overtime Utilization," Operations Research, INFORMS, vol. 36(2), pages 293-307, April.
    5. M. R. Garey & D. S. Johnson & Ravi Sethi, 1976. "The Complexity of Flowshop and Jobshop Scheduling," Mathematics of Operations Research, INFORMS, vol. 1(2), pages 117-129, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aouam, Tarik & Kumar, Kunal, 2019. "On the effect of overtime and subcontracting on supply chain safety stocks," Omega, Elsevier, vol. 89(C), pages 1-20.
    2. Chen, Bo & Lee, Chung-Yee, 2008. "Logistics scheduling with batching and transportation," European Journal of Operational Research, Elsevier, vol. 189(3), pages 871-876, September.
    3. Antoon W.J. Kolen & Jan Karel Lenstra & Christos H. Papadimitriou & Frits C.R. Spieksma, 2007. "Interval scheduling: A survey," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(5), pages 530-543, August.
    4. Schmid, Verena & Doerner, Karl F. & Laporte, Gilbert, 2013. "Rich routing problems arising in supply chain management," European Journal of Operational Research, Elsevier, vol. 224(3), pages 435-448.
    5. Sun, X.T. & Chung, S.H. & Chan, Felix T.S., 2015. "Integrated scheduling of a multi-product multi-factory manufacturing system with maritime transport limits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 110-127.
    6. Chang, Yung-Chia & Lee, Chung-Yee, 2004. "Machine scheduling with job delivery coordination," European Journal of Operational Research, Elsevier, vol. 158(2), pages 470-487, October.
    7. Esaignani Selvarajah & George Steiner, 2009. "Approximation Algorithms for the Supplier's Supply Chain Scheduling Problem to Minimize Delivery and Inventory Holding Costs," Operations Research, INFORMS, vol. 57(2), pages 426-438, April.
    8. Feng Li & Zhi-Long Chen & Zhi-Long Chen, 2017. "Integrated Production, Inventory and Delivery Problems: Complexity and Algorithms," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 232-250, May.
    9. Kathryn E. Stecke & Xuying Zhao, 2007. "Production and Transportation Integration for a Make-to-Order Manufacturing Company with a Commit-to-Delivery Business Mode," Manufacturing & Service Operations Management, INFORMS, vol. 9(2), pages 206-224, September.
    10. Sun Lee, Ik & Yoon, S.H., 2010. "Coordinated scheduling of production and delivery stages with stage-dependent inventory holding costs," Omega, Elsevier, vol. 38(6), pages 509-521, December.
    11. Zhi-Long Chen & George L. Vairaktarakis, 2005. "Integrated Scheduling of Production and Distribution Operations," Management Science, INFORMS, vol. 51(4), pages 614-628, April.
    12. Haiyan Wang & Chung‐Yee Lee, 2005. "Production and transport logistics scheduling with two transport mode choices," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(8), pages 796-809, December.
    13. Wang, Julong & Liu, Zhixue & Li, Feng, 2024. "Integrated production and transportation scheduling problem under nonlinear cost structures," European Journal of Operational Research, Elsevier, vol. 313(3), pages 883-904.
    14. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.
    15. Zhi-Long Chen & Guruprasad Pundoor, 2006. "Order Assignment and Scheduling in a Supply Chain," Operations Research, INFORMS, vol. 54(3), pages 555-572, June.
    16. Azeddine Cheref & Alessandro Agnetis & Christian Artigues & Jean-Charles Billaut, 2017. "Complexity results for an integrated single machine scheduling and outbound delivery problem with fixed sequence," Journal of Scheduling, Springer, vol. 20(6), pages 681-693, December.
    17. Sawik, Tadeusz, 2010. "Single vs. multiple objective supplier selection in a make to order environment," Omega, Elsevier, vol. 38(3-4), pages 203-212, June.
    18. Selvarajah, Esaignani & Steiner, George, 2006. "Batch scheduling in a two-level supply chain--a focus on the supplier," European Journal of Operational Research, Elsevier, vol. 173(1), pages 226-240, August.
    19. Nicholas G. Hall & Chris N. Potts, 2003. "Supply chain scheduling: Batching and delivery," Operations Research, INFORMS, vol. 51(4), pages 566-584, August.
    20. Byung-Cheon Choi & Myoung-Ju Park, 2021. "Single-machine scheduling with periodic due dates to minimize the total earliness and tardy penalty," Journal of Combinatorial Optimization, Springer, vol. 41(4), pages 781-793, May.
    21. Bachtenkirch, David & Bock, Stefan, 2022. "Finding efficient make-to-order production and batch delivery schedules," European Journal of Operational Research, Elsevier, vol. 297(1), pages 133-152.
    22. Guruprasad Pundoor & Zhi‐Long Chen, 2005. "Scheduling a production–distribution system to optimize the tradeoff between delivery tardiness and distribution cost," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 571-589, September.
    23. Zhi-Long Chen, 2010. "Integrated Production and Outbound Distribution Scheduling: Review and Extensions," Operations Research, INFORMS, vol. 58(1), pages 130-148, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    2. D Bai & L Tang, 2010. "New heuristics for flow shop problem to minimize makespan," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(6), pages 1032-1040, June.
    3. Yuri N. Sotskov, 2020. "Mixed Graph Colorings: A Historical Review," Mathematics, MDPI, vol. 8(3), pages 1-24, March.
    4. Jansen, Klaus & Mastrolilli, Monaldo & Solis-Oba, Roberto, 2005. "Approximation schemes for job shop scheduling problems with controllable processing times," European Journal of Operational Research, Elsevier, vol. 167(2), pages 297-319, December.
    5. Yong Chen & Yinhui Cai & Longcheng Liu & Guangting Chen & Randy Goebel & Guohui Lin & Bing Su & An Zhang, 2022. "Path cover with minimum nontrivial paths and its application in two-machine flow-shop scheduling with a conflict graph," Journal of Combinatorial Optimization, Springer, vol. 43(3), pages 571-588, April.
    6. Olivier Ploton & Vincent T’kindt, 2023. "Moderate worst-case complexity bounds for the permutation flowshop scheduling problem using Inclusion–Exclusion," Journal of Scheduling, Springer, vol. 26(2), pages 137-145, April.
    7. Jianming Dong & Ruyan Jin & Jueliang Hu & Guohui Lin, 2019. "A fully polynomial time approximation scheme for scheduling on parallel identical two-stage openshops," Journal of Combinatorial Optimization, Springer, vol. 37(2), pages 668-684, February.
    8. Hoogeveen, Han, 2005. "Multicriteria scheduling," European Journal of Operational Research, Elsevier, vol. 167(3), pages 592-623, December.
    9. Ahmadian, Mohammad Mahdi & Khatami, Mostafa & Salehipour, Amir & Cheng, T.C.E., 2021. "Four decades of research on the open-shop scheduling problem to minimize the makespan," European Journal of Operational Research, Elsevier, vol. 295(2), pages 399-426.
    10. Jianming Dong & Joshua Chang & Bing Su & Jueliang Hu & Guohui Lin, 2020. "Two-stage open-shop scheduling with a two-machine flow shop as a stage: approximation algorithms and empirical experiments," Journal of Scheduling, Springer, vol. 23(5), pages 595-608, October.
    11. Matta, Marie E. & Elmaghraby, Salah E., 2010. "Polynomial time algorithms for two special classes of the proportionate multiprocessor open shop," European Journal of Operational Research, Elsevier, vol. 201(3), pages 720-728, March.
    12. Shabtay, Dvir & Steiner, George & Zhang, Rui, 2016. "Optimal coordination of resource allocation, due date assignment and scheduling decisions," Omega, Elsevier, vol. 65(C), pages 41-54.
    13. Mehravaran, Yasaman & Logendran, Rasaratnam, 2012. "Non-permutation flowshop scheduling in a supply chain with sequence-dependent setup times," International Journal of Production Economics, Elsevier, vol. 135(2), pages 953-963.
    14. Prabuddha De & Jay B. Ghosh & Charles E. Wells, 1994. "Due‐date assignment and early/tardy scheduling on identical parallel machines," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 17-32, February.
    15. Lunardi, Willian T. & Birgin, Ernesto G. & Ronconi, Débora P. & Voos, Holger, 2021. "Metaheuristics for the online printing shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 293(2), pages 419-441.
    16. Zhengcai Cao & Lijie Zhou & Biao Hu & Chengran Lin, 2019. "An Adaptive Scheduling Algorithm for Dynamic Jobs for Dealing with the Flexible Job Shop Scheduling Problem," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 299-309, June.
    17. Shen, Liji & Buscher, Udo, 2012. "Solving the serial batching problem in job shop manufacturing systems," European Journal of Operational Research, Elsevier, vol. 221(1), pages 14-26.
    18. Rossi, Andrea, 2014. "Flexible job shop scheduling with sequence-dependent setup and transportation times by ant colony with reinforced pheromone relationships," International Journal of Production Economics, Elsevier, vol. 153(C), pages 253-267.
    19. K. Z. Gao & P. N. Suganthan & Q. K. Pan & T. J. Chua & T. X. Cai & C. S. Chong, 2016. "Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 363-374, April.
    20. Wang, Ling & Sun, Lin-Yan & Sun, Lin-Hui & Wang, Ji-Bo, 2010. "On three-machine flow shop scheduling with deteriorating jobs," International Journal of Production Economics, Elsevier, vol. 125(1), pages 185-189, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:49:y:2001:i:1:p:134-144. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.