IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v41y2024i3d10.1007_s00357-024-09495-x.html
   My bibliography  Save this article

Copula-Based Non-Metric Unfolding on Augmented Data Matrix

Author

Listed:
  • Marta Nai Ruscone

    (University of Genoa)

  • Daniel Fernández

    (Universitat Politècnica de Catalunya, BarcelonaTech (UPC))

  • Antonio D’Ambrosio

    (University of Naples Federico II)

Abstract

A multidimensional unfolding technique that is not prone to degenerate solutions and is based on multidimensional scaling of a complete data matrix is proposed. We adopt the strategy of augmenting the data matrix, trying to build a complete dissimilarity matrix, by using copula-based association measures among rankings (the individuals), and between rankings and objects (namely, a rank-order representation of the objects through tied rankings). The proposed technique leads to acceptable recovery of given preference structures.

Suggested Citation

  • Marta Nai Ruscone & Daniel Fernández & Antonio D’Ambrosio, 2024. "Copula-Based Non-Metric Unfolding on Augmented Data Matrix," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 678-697, November.
  • Handle: RePEc:spr:jclass:v:41:y:2024:i:3:d:10.1007_s00357-024-09495-x
    DOI: 10.1007/s00357-024-09495-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00357-024-09495-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00357-024-09495-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gregory Bonn & Romin Tafarodi, 2013. "Visualizing the Good Life: A Cross-Cultural Analysis," Journal of Happiness Studies, Springer, vol. 14(6), pages 1839-1856, December.
    2. Willem Heiser & Patrick Groenen, 1997. "Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 63-83, March.
    3. Carter, Nathan T. & Lake, Christopher J. & Zickar, Michael J., 2010. "Toward Understanding the Psychology of Unfolding," Industrial and Organizational Psychology, Cambridge University Press, vol. 3(4), pages 511-514, December.
    4. John Ross & Norman Cliff, 1964. "A generalization of the interpoint distance model," Psychometrika, Springer;The Psychometric Society, vol. 29(2), pages 167-176, June.
    5. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    6. Ian Spence & Dennis Domoney, 1974. "Single subject incomplete designs for nonmetric multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 469-490, December.
    7. Eugenio Brentari & Livia Dancelli & Marica Manisera, 2016. "Clustering ranking data in market segmentation: a case study on the Italian McDonald's customers’ preferences," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 1959-1976, August.
    8. K. Deun & P. Groenen & W. Heiser & F. Busing & L. Delbeke, 2005. "Interpreting degenerate solutions in unfolding by use of the vector model and the compensatory distance model," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 45-69, March.
    9. Frank Busing & Patrick Groenen & Willem Heiser, 2005. "Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 71-98, March.
    10. Andrea Bonanomi & Marta Nai Ruscone & Silvia Angela Osmetti, 2017. "Defining subjects distance in hierarchical cluster analysis by copula approach," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(2), pages 859-872, March.
    11. Amodio, S. & D’Ambrosio, A. & Siciliano, R., 2016. "Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 667-676.
    12. Antonio D’Ambrosio & Carmela Iorio & Michele Staiano & Roberta Siciliano, 2019. "Median constrained bucket order rank aggregation," Computational Statistics, Springer, vol. 34(2), pages 787-802, June.
    13. de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
    14. Rust, Roland T., 2020. "The future of marketing," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 15-26.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    2. Vera, J. Fernando & Macas, Rodrigo & Heiser, Willem J., 2009. "A dual latent class unfolding model for two-way two-mode preference rating data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3231-3244, June.
    3. Antonio D’Ambrosio & Carmela Iorio & Michele Staiano & Roberta Siciliano, 2019. "Median constrained bucket order rank aggregation," Computational Statistics, Springer, vol. 34(2), pages 787-802, June.
    4. Frank Busing & Mark Rooij, 2009. "Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 329-360, December.
    5. Carmela Iorio & Giuseppe Pandolfo & Antonio D’Ambrosio & Roberta Siciliano, 2020. "Mining big data in tourism," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1655-1669, December.
    6. Joonwook Park & Wayne DeSarbo & John Liechty, 2008. "A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 451-472, September.
    7. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    8. Dzemyda, Gintautas & Sabaliauskas, Martynas, 2021. "Geometric multidimensional scaling: A new approach for data dimensionality reduction," Applied Mathematics and Computation, Elsevier, vol. 409(C).
    9. Willem Heiser, 2004. "Geometric representation of association between categories," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 513-545, December.
    10. Pierpaolo D’Urso & Vincenzina Vitale, 2022. "A Kemeny Distance-Based Robust Fuzzy Clustering for Preference Data," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 600-647, November.
    11. Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
    12. Chou, Jui-Sheng & Chien, Ya-Ling & Nguyen, Ngoc-Mai & Truong, Dinh-Nhat, 2018. "Pricing policy of floating ticket fare for riding high speed rail based on time-space compression," Transport Policy, Elsevier, vol. 69(C), pages 179-192.
    13. Khoja, Layla & Chipulu, Maxwell & Jayasekera, Ranadeva, 2019. "Analysis of financial distress cross countries: Using macroeconomic, industrial indicators and accounting data," International Review of Financial Analysis, Elsevier, vol. 66(C).
    14. Si-Tong Lu & Miao Zhang & Qing-Na Li, 2020. "Feasibility and a fast algorithm for Euclidean distance matrix optimization with ordinal constraints," Computational Optimization and Applications, Springer, vol. 76(2), pages 535-569, June.
    15. C Mar-Molinero & J Mingers, 2007. "An evaluation of the limitations of, and alternatives to, the Co-Plot methodology," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 874-886, July.
    16. Antonio D’Ambrosio & Willem J. Heiser, 2016. "A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 774-794, September.
    17. Zaborski Artur, 2020. "The Use of the Incomplete Tetrad Method for Measuring the Similarities in Nonmetric Multidimensional Scaling," Folia Oeconomica Stetinensia, Sciendo, vol. 20(1), pages 519-530, June.
    18. Wayne DeSarbo & Vithala Rao, 1984. "GENFOLD2: A set of models and algorithms for the general UnFOLDing analysis of preference/dominance data," Journal of Classification, Springer;The Classification Society, vol. 1(1), pages 147-186, December.
    19. José A. Tenreiro Machado & Alexandra Galhano & Daniel Cao Labora, 2021. "A Clustering Perspective of the Collatz Conjecture," Mathematics, MDPI, vol. 9(4), pages 1-14, February.
    20. Chen, Yunxiao & Ying, Zhiliang & Zhang, Haoran, 2021. "Unfolding-model-based visualization: theory, method and applications," LSE Research Online Documents on Economics 108876, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:41:y:2024:i:3:d:10.1007_s00357-024-09495-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.