IDEAS home Printed from https://ideas.repec.org/a/spr/advdac/v15y2021i4d10.1007_s11634-021-00442-x.html
   My bibliography  Save this article

Consensus among preference rankings: a new weighted correlation coefficient for linear and weak orderings

Author

Listed:
  • Antonella Plaia

    (University of Palermo)

  • Simona Buscemi

    (University of Palermo)

  • Mariangela Sciandra

    (University of Palermo)

Abstract

Preference data are a particular type of ranking data where some subjects (voters, judges,...) express their preferences over a set of alternatives (items). In most real life cases, some items receive the same preference by a judge, thus giving rise to a ranking with ties. An important issue involving rankings concerns the aggregation of the preferences into a “consensus”. The purpose of this paper is to investigate the consensus between rankings with ties, taking into account the importance of swapping elements belonging to the top (or to the bottom) of the ordering (position weights). By combining the structure of $$\tau _x$$ τ x proposed by Emond and Mason (J Multi-Criteria Decis Anal 11(1):17–28, 2002) with the class of weighted Kemeny-Snell distances, a position weighted rank correlation coefficient is proposed for comparing rankings with ties. The one-to-one correspondence between the weighted distance and the rank correlation coefficient is proved, analytically speaking, using both equal and decreasing weights.

Suggested Citation

  • Antonella Plaia & Simona Buscemi & Mariangela Sciandra, 2021. "Consensus among preference rankings: a new weighted correlation coefficient for linear and weak orderings," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(4), pages 1015-1037, December.
  • Handle: RePEc:spr:advdac:v:15:y:2021:i:4:d:10.1007_s11634-021-00442-x
    DOI: 10.1007/s11634-021-00442-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11634-021-00442-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11634-021-00442-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonella Plaia & Mariangela Sciandra, 2019. "Weighted distance-based trees for ranking data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 427-444, June.
    2. Tanaka, Shunji & Tierney, Kevin, 2018. "Solving real-world sized container pre-marshalling problems with an iterative deepening branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 264(1), pages 165-180.
    3. Antonio D’Ambrosio & Willem J. Heiser, 2016. "A Recursive Partitioning Method for the Prediction of Preference Rankings Based Upon Kemeny Distances," Psychometrika, Springer;The Psychometric Society, vol. 81(3), pages 774-794, September.
    4. Cook, Wade D., 2006. "Distance-based and ad hoc consensus models in ordinal preference ranking," European Journal of Operational Research, Elsevier, vol. 172(2), pages 369-385, July.
    5. Michael Fligner & Joseph Verducci, 1990. "Posterior probabilities for a consensus ordering," Psychometrika, Springer;The Psychometric Society, vol. 55(1), pages 53-63, March.
    6. Irurozki, Ekhine & Calvo, Borja & Lozano, Jose A., 2016. "PerMallows: An R Package for Mallows and Generalized Mallows Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i12).
    7. Amodio, S. & D’Ambrosio, A. & Siciliano, R., 2016. "Accurate algorithms for identifying the median ranking when dealing with weak and partial rankings under the Kemeny axiomatic approach," European Journal of Operational Research, Elsevier, vol. 249(2), pages 667-676.
    8. Antonio D’Ambrosio & Carmela Iorio & Michele Staiano & Roberta Siciliano, 2019. "Median constrained bucket order rank aggregation," Computational Statistics, Springer, vol. 34(2), pages 787-802, June.
    9. Robert Fagot, 1994. "An ordinal coefficient of relational agreement for multiple judges," Psychometrika, Springer;The Psychometric Society, vol. 59(2), pages 241-251, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonella Plaia & Simona Buscemi & Johannes Fürnkranz & Eneldo Loza Mencía, 2022. "Comparing Boosting and Bagging for Decision Trees of Rankings," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 78-99, March.
    2. Alessandro Albano & José Luis García-Lapresta & Antonella Plaia & Mariangela Sciandra, 2023. "A family of distances for preference–approvals," Annals of Operations Research, Springer, vol. 323(1), pages 1-29, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeawon Yoo & Adolfo R. Escobedo, 2021. "A New Binary Programming Formulation and Social Choice Property for Kemeny Rank Aggregation," Decision Analysis, INFORMS, vol. 18(4), pages 296-320, December.
    2. Antonella Plaia & Simona Buscemi & Johannes Fürnkranz & Eneldo Loza Mencía, 2022. "Comparing Boosting and Bagging for Decision Trees of Rankings," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 78-99, March.
    3. Yoo, Yeawon & Escobedo, Adolfo R. & Skolfield, J. Kyle, 2020. "A new correlation coefficient for comparing and aggregating non-strict and incomplete rankings," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1025-1041.
    4. Antonio D’Ambrosio & Carmela Iorio & Michele Staiano & Roberta Siciliano, 2019. "Median constrained bucket order rank aggregation," Computational Statistics, Springer, vol. 34(2), pages 787-802, June.
    5. Carmela Iorio & Giuseppe Pandolfo & Antonio D’Ambrosio & Roberta Siciliano, 2020. "Mining big data in tourism," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(5), pages 1655-1669, December.
    6. Akbari, Sina & Escobedo, Adolfo R., 2023. "Beyond kemeny rank aggregation: A parameterizable-penalty framework for robust ranking aggregation with ties," Omega, Elsevier, vol. 119(C).
    7. Antonella Plaia & Mariangela Sciandra, 2019. "Weighted distance-based trees for ranking data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(2), pages 427-444, June.
    8. Azzini, Ivano & Munda, Giuseppe, 2020. "A new approach for identifying the Kemeny median ranking," European Journal of Operational Research, Elsevier, vol. 281(2), pages 388-401.
    9. Cascón, J.M. & González-Arteaga, T. & de Andrés Calle, R., 2022. "A new preference classification approach: The λ-dissensus cluster algorithm," Omega, Elsevier, vol. 111(C).
    10. Chacón, José E. & Fernández Serrano, Javier, 2024. "Bayesian taut splines for estimating the number of modes," Computational Statistics & Data Analysis, Elsevier, vol. 196(C).
    11. Noelia Rico & Camino R. Vela & Raúl Pérez-Fernández & Irene Díaz, 2021. "Reducing the Computational Time for the Kemeny Method by Exploiting Condorcet Properties," Mathematics, MDPI, vol. 9(12), pages 1-12, June.
    12. Parreño-Torres, Consuelo & Alvarez-Valdes, Ramon & Ruiz, Rubén & Tierney, Kevin, 2020. "Minimizing crane times in pre-marshalling problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    13. Franceschini, Fiorenzo & Maisano, Domenico, 2015. "Checking the consistency of the solution in ordinal semi-democratic decision-making problems," Omega, Elsevier, vol. 57(PB), pages 188-195.
    14. Dimitris Tsintsaris & Milan Tsompanoglou & Evangelos Ioannidis, 2024. "Dynamics of Social Influence and Knowledge in Networks: Sociophysics Models and Applications in Social Trading, Behavioral Finance and Business," Mathematics, MDPI, vol. 12(8), pages 1-27, April.
    15. Qi Wei & Rui Wang & Chuan-Yang Ruan, 2024. "Similarity Measures of Probabilistic Interval Preference Ordering Sets and Their Applications in Decision-Making," Mathematics, MDPI, vol. 12(20), pages 1-26, October.
    16. Tanaka, Shunji & Voß, Stefan, 2019. "An exact algorithm for the block relocation problem with a stowage plan," European Journal of Operational Research, Elsevier, vol. 279(3), pages 767-781.
    17. González-Arteaga, T. & Alcantud, J.C.R. & de Andrés Calle, R., 2016. "A cardinal dissensus measure based on the Mahalanobis distance," European Journal of Operational Research, Elsevier, vol. 251(2), pages 575-585.
    18. Freixas, Josep & Kurz, Sascha, 2013. "The golden number and Fibonacci sequences in the design of voting structures," European Journal of Operational Research, Elsevier, vol. 226(2), pages 246-257.
    19. Boge, Sven & Goerigk, Marc & Knust, Sigrid, 2020. "Robust optimization for premarshalling with uncertain priority classes," European Journal of Operational Research, Elsevier, vol. 287(1), pages 191-210.
    20. Andrea Aveni & Ludovico Crippa & Giulio Principi, 2024. "On the Weighted Top-Difference Distance: Axioms, Aggregation, and Approximation," Papers 2403.15198, arXiv.org, revised Mar 2024.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:15:y:2021:i:4:d:10.1007_s11634-021-00442-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.