IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v53y2009i8p3231-3244.html
   My bibliography  Save this article

A dual latent class unfolding model for two-way two-mode preference rating data

Author

Listed:
  • Vera, J. Fernando
  • Macas, Rodrigo
  • Heiser, Willem J.

Abstract

In unfolding for two-way two-mode preference ratings data, the categorization of the set of individuals while the categories are represented in a low dimensional space may be an advisable procedure to facilitate their understanding. In addition to considering groups of individuals of a similar preference pattern, homogeneous groups of objects are also considered, such that within each group there are clustered objects perceived to have similar attributes. A dual latent class model is proposed for a matrix of preference ratings data, which will partition the individuals and the objects into classes, and simultaneously represent the cluster centers in a low dimensional space, while individuals and objects retain their preference relationship. Both the categories achieved and the unfolding configuration are estimated to be simultaneously optimal, by means of a conditional maximum likelihood estimation procedure, in a simulated annealing framework that enables us to take a statistical decision about the parameters of the model. The adjusted BIC statistic is employed to test the number of mixture components, and the dimensionality of the representation. Real and artificial data sets are analyzed to illustrate the model's performance.

Suggested Citation

  • Vera, J. Fernando & Macas, Rodrigo & Heiser, Willem J., 2009. "A dual latent class unfolding model for two-way two-mode preference rating data," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3231-3244, June.
  • Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3231-3244
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167-9473(08)00346-0
    Download Restriction: Full text for ScienceDirect subscribers only.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. van Rosmalen, J.M. & Groenen, P.J.F. & Trejos, J. & Castilli, W., 2005. "Global Optimization strategies for two-mode clustering," Econometric Institute Research Papers EI 2005-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Willem Heiser, 1991. "A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 7-27, March.
    3. J. Fernando Vera & Willem J. Heiser & Alex Murillo, 2007. "Global Optimization in Any Minkowski Metric: A Permutation-Translation Simulated Annealing Algorithm for Multidimensional Scaling," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 277-301, September.
    4. Chih-Chien Yang & Chih-Chiang Yang, 2007. "Separating Latent Classes by Information Criteria," Journal of Classification, Springer;The Classification Society, vol. 24(2), pages 183-203, September.
    5. Willem Heiser & Patrick Groenen, 1997. "Cluster differences scaling with a within-clusters loss component and a fuzzy successive approximation strategy to avoid local minima," Psychometrika, Springer;The Psychometric Society, vol. 62(1), pages 63-83, March.
    6. Suzanne Winsberg & Geert Soete, 1993. "A latent class approach to fitting the weighted Euclidean model, clascal," Psychometrika, Springer;The Psychometric Society, vol. 58(2), pages 315-330, June.
    7. K. Deun & P. Groenen & W. Heiser & F. Busing & L. Delbeke, 2005. "Interpreting degenerate solutions in unfolding by use of the vector model and the compensatory distance model," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 45-69, March.
    8. Frank Busing & Patrick Groenen & Willem Heiser, 2005. "Avoiding degeneracy in multidimensional unfolding by penalizing on the coefficient of variation," Psychometrika, Springer;The Psychometric Society, vol. 70(1), pages 71-98, March.
    9. Vera, J. Fernando & Di­az-Garci­a, Jose A., 2008. "A global simulated annealing heuristic for the three-parameter lognormal maximum likelihood estimation," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5055-5065, August.
    10. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blasius, J. & Greenacre, M. & Groenen, P.J.F. & van de Velden, M., 2009. "Special issue on correspondence analysis and related methods," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3103-3106, June.
    2. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    3. Daniel M. Ringel & Bernd Skiera, 2016. "Visualizing Asymmetric Competition Among More Than 1,000 Products Using Big Search Data," Marketing Science, INFORMS, vol. 35(3), pages 511-534, May.
    4. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    5. Jan Schepers & Iven Mechelen & Eva Ceulemans, 2011. "The Real-Valued Model of Hierarchical Classes," Journal of Classification, Springer;The Classification Society, vol. 28(3), pages 363-389, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. J. Vera & Rodrigo Macías & Willem Heiser, 2013. "Cluster Differences Unfolding for Two-Way Two-Mode Preference Rating Data," Journal of Classification, Springer;The Classification Society, vol. 30(3), pages 370-396, October.
    2. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    3. J. Vera & Rodrigo Macías & Willem Heiser, 2009. "A Latent Class Multidimensional Scaling Model for Two-Way One-Mode Continuous Rating Dissimilarity Data," Psychometrika, Springer;The Psychometric Society, vol. 74(2), pages 297-315, June.
    4. Marta Nai Ruscone & Daniel Fernández & Antonio D’Ambrosio, 2024. "Copula-Based Non-Metric Unfolding on Augmented Data Matrix," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 678-697, November.
    5. Willem Heiser, 2004. "Geometric representation of association between categories," Psychometrika, Springer;The Psychometric Society, vol. 69(4), pages 513-545, December.
    6. Vichi, Maurizio & Saporta, Gilbert, 2009. "Clustering and disjoint principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3194-3208, June.
    7. Simon Blanchard & Wayne DeSarbo, 2013. "A New Zero-Inflated Negative Binomial Methodology for Latent Category Identification," Psychometrika, Springer;The Psychometric Society, vol. 78(2), pages 322-340, April.
    8. Patrick Groenen & Willem Heiser, 1996. "The tunneling method for global optimization in multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 61(3), pages 529-550, September.
    9. Joonwook Park & Wayne DeSarbo & John Liechty, 2008. "A Hierarchical Bayesian Multidimensional Scaling Methodology for Accommodating Both Structural and Preference Heterogeneity," Psychometrika, Springer;The Psychometric Society, vol. 73(3), pages 451-472, September.
    10. Köhn, Hans-Friedrich, 2010. "Representation of individual differences in rectangular proximity data through anti-Q matrix decomposition," Computational Statistics & Data Analysis, Elsevier, vol. 54(10), pages 2343-2357, October.
    11. Van Mechelen, Iven & Schepers, Jan, 2007. "A unifying model involving a categorical and/or dimensional reduction for multimode data," Computational Statistics & Data Analysis, Elsevier, vol. 52(1), pages 537-549, September.
    12. Frank Busing & Mark Rooij, 2009. "Unfolding Incomplete Data: Guidelines for Unfolding Row-Conditional Rank Order Data with Random Missings," Journal of Classification, Springer;The Classification Society, vol. 26(3), pages 329-360, December.
    13. Khanh Duong, 2024. "Is meritocracy just? New evidence from Boolean analysis and Machine learning," Journal of Computational Social Science, Springer, vol. 7(2), pages 1795-1821, October.
    14. Wilde, Pieter de & Junk, Wiebke Marie & Palmtag, Tabea, 2016. "Accountability and opposition to globalization in international assemblies," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 22(4), pages 823-846.
    15. Spiliopoulos, Leonidas, 2012. "Pattern recognition and subjective belief learning in a repeated constant-sum game," Games and Economic Behavior, Elsevier, vol. 75(2), pages 921-935.
    16. Geert Soete & Willem Heiser, 1993. "A latent class unfolding model for analyzing single stimulus preference ratings," Psychometrika, Springer;The Psychometric Society, vol. 58(4), pages 545-565, December.
    17. José Díaz-García & Francisco Caro-Lopera, 2012. "Generalised shape theory via SV decomposition I," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(4), pages 541-565, May.
    18. J. Fernando Vera & Rodrigo Macías, 2021. "On the Behaviour of K-Means Clustering of a Dissimilarity Matrix by Means of Full Multidimensional Scaling," Psychometrika, Springer;The Psychometric Society, vol. 86(2), pages 489-513, June.
    19. Elizabeth Ann Maharaj & Pierpaolo D’Urso & Don Galagedera, 2010. "Wavelet-based Fuzzy Clustering of Time Series," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 231-275, September.
    20. Julius Žilinskas, 2012. "Parallel branch and bound for multidimensional scaling with city-block distances," Journal of Global Optimization, Springer, vol. 54(2), pages 261-274, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:3231-3244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.