IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v27y2010i2p211-230.html
   My bibliography  Save this article

Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application

Author

Listed:
  • Mitsunori Kayano
  • Koji Dozono
  • Sadanori Konishi

Abstract

No abstract is available for this item.

Suggested Citation

  • Mitsunori Kayano & Koji Dozono & Sadanori Konishi, 2010. "Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 211-230, September.
  • Handle: RePEc:spr:jclass:v:27:y:2010:i:2:p:211-230
    DOI: 10.1007/s00357-010-9054-8
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-010-9054-8
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-010-9054-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter J. Green & Kanti V. Mardia, 2006. "Bayesian alignment using hierarchical models, with applications in protein bioinformatics," Biometrika, Biometrika Trust, vol. 93(2), pages 235-254, June.
    2. C. Abraham & P. A. Cornillon & E. Matzner‐Løber & N. Molinari, 2003. "Unsupervised Curve Clustering using B‐Splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 581-595, September.
    3. Seiya Imoto & Sadanori Konishi, 2003. "Selection of smoothing parameters inB-spline nonparametric regression models using information criteria," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 671-687, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yupeng Wang & Jianghui Cai & Haifeng Yang & Jie Wang & Bo Liang & Xujun Zhao, 2024. "A New Composite Dissimilarity Measure for Planar Curves Based on Higher-Order Derivatives," Mathematics, MDPI, vol. 12(19), pages 1-17, October.
    2. Manuel Escabias & Ana Aguilera & M. Aguilera-Morillo, 2014. "Functional PCA and Base-Line Logit Models," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 296-324, October.
    3. Donatella Bálint & Lorentz Jäntschi, 2021. "Comparison of Molecular Geometry Optimization Methods Based on Molecular Descriptors," Mathematics, MDPI, vol. 9(22), pages 1-12, November.
    4. Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    5. Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
    6. Rhoden, Imke & Weller, Daniel & Voit, Ann-Katrin, 2021. "Spatio-temporal dynamics of European innovation: An exploratory approach via multivariate functional data cluster analysis," Ruhr Economic Papers 926, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    7. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    8. Li, Zehang & Elías, Antonio & Morales, Juan M., 2024. "Clustering and forecasting of day-ahead electricity supply curves using a market-based distance," DES - Working Papers. Statistics and Econometrics. WS 43805, Universidad Carlos III de Madrid. Departamento de Estadística.
    9. Amandine Schmutz & Julien Jacques & Charles Bouveyron & Laurence Chèze & Pauline Martin, 2020. "Clustering multivariate functional data in group-specific functional subspaces," Computational Statistics, Springer, vol. 35(3), pages 1101-1131, September.
    10. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    11. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    12. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    2. C. Abraham & G. Biau & B. Cadre, 2006. "On the Kernel Rule for Function Classification," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(3), pages 619-633, September.
    3. repec:cte:wsrepe:ws140101 is not listed on IDEAS
    4. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    5. Ian L. Dryden & Jonathan D. Hirst & James L. Melville, 2007. "Statistical Analysis of Unlabeled Point Sets: Comparing Molecules in Chemoinformatics," Biometrics, The International Biometric Society, vol. 63(1), pages 237-251, March.
    6. Angela Andreella & Livio Finos, 2022. "Procrustes Analysis for High-Dimensional Data," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1422-1438, December.
    7. Shuichi Tokushige & Hiroshi Yadohisa & Koichi Inada, 2007. "Crisp and fuzzy k-means clustering algorithms for multivariate functional data," Computational Statistics, Springer, vol. 22(1), pages 1-16, April.
    8. John T. Kent, 2014. "Contribution to the Discussion of the Paper Geodesic Monte Carlo on Embedded Manifolds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 10-11, March.
    9. Andrés Alonso & David Casado & Sara López-Pintado & Juan Romo, 2014. "Robust Functional Supervised Classification for Time Series," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 325-350, October.
    10. S.M. Najibi & M.R. Faghihi & M. Golalizadeh & S.S. Arab, 2015. "Bayesian alignment of proteins via Delaunay tetrahedralization," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1064-1079, May.
    11. Fang, Kuangnan & Chen, Yuanxing & Ma, Shuangge & Zhang, Qingzhao, 2022. "Biclustering analysis of functionals via penalized fusion," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    12. Michio Yamamoto, 2012. "Clustering of functional data in a low-dimensional subspace," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(3), pages 219-247, October.
    13. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    14. Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.
    15. Kagerer, Kathrin, 2013. "A short introduction to splines in least squares regression analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 472, University of Regensburg, Department of Economics.
    16. Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
    17. Tin Lok James Ng & Thomas Brendan Murphy, 2021. "Model-based Clustering of Count Processes," Journal of Classification, Springer;The Classification Society, vol. 38(2), pages 188-211, July.
    18. Michael Habeck, 2009. "Generation of three-dimensional random rotations in fitting and matching problems," Computational Statistics, Springer, vol. 24(4), pages 719-731, December.
    19. C. Denis & E. Lebarbier & C. Lévy‐Leduc & O. Martin & L. Sansonnet, 2020. "A novel regularized approach for functional data clustering: an application to milking kinetics in dairy goats," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(3), pages 623-640, June.
    20. Athanasios Micheas & Yuqiang Peng, 2010. "Bayesian Procrustes analysis with applications to hydrology," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 41-55.
    21. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:27:y:2010:i:2:p:211-230. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.