IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v176y2020ics0047259x19300223.html
   My bibliography  Save this article

Independent component analysis for multivariate functional data

Author

Listed:
  • Virta, Joni
  • Li, Bing
  • Nordhausen, Klaus
  • Oja, Hannu

Abstract

We extend two methods of independent component analysis, fourth order blind identification and joint approximate diagonalization of eigen-matrices, to vector-valued functional data. Multivariate functional data occur naturally and frequently in modern applications, and extending independent component analysis to this setting allows us to distill important information from this type of data, going a step further than the functional principal component analysis. To allow the inversion of the covariance operator we make the assumption that the dependency between the component functions lies in a finite-dimensional subspace. In this subspace we define fourth cross-cumulant operators and use them to construct the two novel, Fisher consistent methods for solving the independent component problem for vector-valued functions. Both simulations and an application on a hand gesture data set show the usefulness and advantages of the proposed methods over functional principal component analysis.

Suggested Citation

  • Virta, Joni & Li, Bing & Nordhausen, Klaus & Oja, Hannu, 2020. "Independent component analysis for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
  • Handle: RePEc:eee:jmvana:v:176:y:2020:i:c:s0047259x19300223
    DOI: 10.1016/j.jmva.2019.104568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19300223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bonhomme, Stphane & Robin, Jean-Marc, 2009. "Consistent noisy independent component analysis," Journal of Econometrics, Elsevier, vol. 149(1), pages 12-25, April.
    2. Michio Yamamoto & Heungsun Hwang, 2017. "Dimension-Reduced Clustering of Functional Data via Subspace Separation," Journal of Classification, Springer;The Classification Society, vol. 34(2), pages 294-326, July.
    3. Bing Li & Eftychia Solea, 2018. "A Nonparametric Graphical Model for Functional Data With Application to Brain Networks Based on fMRI," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1637-1655, October.
    4. Benjamin B. Risk & David S. Matteson & David Ruppert, 2019. "Linear Non-Gaussian Component Analysis Via Maximum Likelihood," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 332-343, January.
    5. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    6. Mitsunori Kayano & Koji Dozono & Sadanori Konishi, 2010. "Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 211-230, September.
    7. Matilainen, Markus & Nordhausen, Klaus & Oja, Hannu, 2015. "New independent component analysis tools for time series," Statistics & Probability Letters, Elsevier, vol. 105(C), pages 80-87.
    8. Miettinen, Jari & Nordhausen, Klaus & Taskinen, Sara, 2017. "Blind Source Separation Based on Joint Diagonalization in R: The Packages JADE and BSSasymp," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i02).
    9. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Rejoinder to ‘multivariate functional outlier detection’," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 269-277, July.
    10. repec:hal:spmain:info:hdl:2441/eu4vqp9ompqllr09j01si09a2 is not listed on IDEAS
    11. Shuichi Tokushige & Hiroshi Yadohisa & Koichi Inada, 2007. "Crisp and fuzzy k-means clustering algorithms for multivariate functional data," Computational Statistics, Springer, vol. 22(1), pages 1-16, April.
    12. Bing Li & Hyonho Chun & Hongyu Zhao, 2014. "On an Additive Semigraphoid Model for Statistical Networks With Application to Pathway Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1188-1204, September.
    13. repec:hal:wpspec:info:hdl:2441/eu4vqp9ompqllr09j01si09a2 is not listed on IDEAS
    14. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    15. Berrendero, J.R. & Justel, A. & Svarc, M., 2011. "Principal components for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2619-2634, September.
    16. Pauliina Ilmonen & Hannu Oja & Robert Serfling, 2012. "On Invariant Coordinate System (ICS) Functionals," International Statistical Review, International Statistical Institute, vol. 80(1), pages 93-110, April.
    17. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Rou & Liu, Shishi & Li, Haocheng & Zhang, Jingxiao, 2022. "Robust functional principal component analysis for non-Gaussian longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    2. Marc Vidal & Mattia Rosso & Ana M. Aguilera, 2021. "Bi-Smoothed Functional Independent Component Analysis for EEG Artifact Removal," Mathematics, MDPI, vol. 9(11), pages 1-17, May.
    3. Nordhausen, Klaus & Ruiz-Gazen, Anne, 2022. "On the usage of joint diagonalization in multivariate statistics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    4. Thomas-Agnan, Christine & Mondon, Camille & Trinh, Thi-Huong & Ruiz-Gazen, Anne, 2024. "ICS for complex data with application to outlier detection for density data objects," TSE Working Papers 24_1585, Toulouse School of Economics (TSE).
    5. Archimbaud, Aurore & Boulfani, Fériel & Gendre, Xavier & Nordhausen, Klaus & Ruiz-Gazen, Anne & Virta, Joni, 2021. "ICS for multivariate functional anomaly detection with applications to predictive maintenance and quality control," TSE Working Papers 21-1182, Toulouse School of Economics (TSE), revised Mar 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiu, Zhiping & Fan, Jiangyuan & Zhang, Jin-Ting & Chen, Jianwei, 2024. "Tests for equality of several covariance matrix functions for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    2. Qiu, Zhiping & Chen, Jianwei & Zhang, Jin-Ting, 2021. "Two-sample tests for multivariate functional data with applications," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    3. Zhu, Tianming & Zhang, Jin-Ting & Cheng, Ming-Yen, 2022. "One-way MANOVA for functional data via Lawley–Hotelling trace test," Journal of Multivariate Analysis, Elsevier, vol. 192(C).
    4. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Amandine Schmutz & Julien Jacques & Charles Bouveyron & Laurence Chèze & Pauline Martin, 2020. "Clustering multivariate functional data in group-specific functional subspaces," Computational Statistics, Springer, vol. 35(3), pages 1101-1131, September.
    6. Xiuli Du & Xiaohu Jiang & Jinguan Lin, 2023. "Multinomial Logistic Factor Regression for Multi-source Functional Block-wise Missing Data," Psychometrika, Springer;The Psychometric Society, vol. 88(3), pages 975-1001, September.
    7. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    8. T. Górecki & Ł. Smaga, 2017. "Multivariate analysis of variance for functional data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(12), pages 2172-2189, September.
    9. Kyunghee Han & Pantelis Z Hadjipantelis & Jane-Ling Wang & Michael S Kramer & Seungmi Yang & Richard M Martin & Hans-Georg Müller, 2018. "Functional principal component analysis for identifying multivariate patterns and archetypes of growth, and their association with long-term cognitive development," PLOS ONE, Public Library of Science, vol. 13(11), pages 1-18, November.
    10. Jorge R. Sosa Donoso & Miguel Flores & Salvador Naya & Javier Tarrío-Saavedra, 2023. "Local Correlation Integral Approach for Anomaly Detection Using Functional Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
    11. Nordhausen, Klaus & Ruiz-Gazen, Anne, 2022. "On the usage of joint diagonalization in multivariate statistics," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    12. Ojo, Oluwasegun Taiwo & Fernández Anta, Antonio & Genton, Marc G., 2022. "Multivariate Functional Outlier Detection using the FastMUOD Indices," DES - Working Papers. Statistics and Econometrics. WS 35665, Universidad Carlos III de Madrid. Departamento de Estadística.
    13. Archimbaud, Aurore & Boulfani, Fériel & Gendre, Xavier & Nordhausen, Klaus & Ruiz-Gazen, Anne & Virta, Joni, 2021. "ICS for multivariate functional anomaly detection with applications to predictive maintenance and quality control," TSE Working Papers 21-1182, Toulouse School of Economics (TSE), revised Mar 2022.
    14. Amovin-Assagba, Martial & Gannaz, Irène & Jacques, Julien, 2022. "Outlier detection in multivariate functional data through a contaminated mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    15. Song, Jun & Li, Bing, 2021. "Nonlinear and additive principal component analysis for functional data," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    16. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    17. Mirosław Krzyśko & Łukasz Smaga, 2017. "An Application Of Functional Multivariate Regression Model To Multiclass Classification," Statistics in Transition New Series, Polish Statistical Association, vol. 18(3), pages 433-442, September.
    18. Francesca Ieva & Anna Paganoni, 2015. "Discussion of “multivariate functional outlier detection” by M. Hubert, P. Rousseeuw and P. Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 217-221, July.
    19. François Bachoc & Marc G Genton & Klaus Nordhausen & Anne Ruiz-Gazen & Joni Virta, 2020. "Spatial blind source separation," Biometrika, Biometrika Trust, vol. 107(3), pages 627-646.
    20. Virta, Joni & Lietzén, Niko & Viitasaari, Lauri & Ilmonen, Pauliina, 2024. "Latent model extreme value index estimation," Journal of Multivariate Analysis, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:176:y:2020:i:c:s0047259x19300223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.