IDEAS home Printed from https://ideas.repec.org/a/inm/orijds/v3y2024i2p203-218.html
   My bibliography  Save this article

Multivariate Functional Clustering with Variable Selection and Application to Sensor Data from Engineering Systems

Author

Listed:
  • Zhongnan Jin

    (Department of Statistics, Virginia Tech, Blacksburg, Virginia 24061)

  • Jie Min

    (Department of Statistics, Virginia Tech, Blacksburg, Virginia 24061)

  • Yili Hong

    (Department of Statistics, Virginia Tech, Blacksburg, Virginia 24061)

  • Pang Du

    (Department of Statistics, Virginia Tech, Blacksburg, Virginia 24061)

  • Qingyu Yang

    (Department of Industrial and Systems Engineering, Wayne State University, Detroit, Michigan 48202)

Abstract

Multisensor data that track system operating behaviors are widely available nowadays from various engineering systems. Measurements from each sensor over time form a curve and can be viewed as functional data. Clustering of these multivariate functional curves is important for studying the operating patterns of systems. One complication in such applications is the possible presence of sensors whose data do not contain relevant information. Hence, it is desirable for the clustering method to equip with an automatic sensor selection procedure. Motivated by a real engineering application, we propose a functional data clustering method that simultaneously removes noninformative sensors and groups functional curves into clusters using informative sensors. Functional principal component analysis is used to transform multivariate functional data into a coefficient matrix for data reduction. We then model the transformed data by a Gaussian mixture distribution to perform model-based clustering with variable selection. Three types of penalties, the individual, variable, and group penalties, are considered to achieve automatic variable selection. Extensive simulations are conducted to assess the clustering and variable selection performance of the proposed methods. The application of the proposed methods to an engineering system with multiple sensors shows the promise of the methods and reveals interesting patterns in the sensor data.

Suggested Citation

  • Zhongnan Jin & Jie Min & Yili Hong & Pang Du & Qingyu Yang, 2024. "Multivariate Functional Clustering with Variable Selection and Application to Sensor Data from Engineering Systems," INFORMS Joural on Data Science, INFORMS, vol. 3(2), pages 203-218, October.
  • Handle: RePEc:inm:orijds:v:3:y:2024:i:2:p:203-218
    DOI: 10.1287/ijds.2022.0034
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijds.2022.0034
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijds.2022.0034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. M. Giacofci & S. Lambert-Lacroix & G. Marot & F. Picard, 2013. "Wavelet-Based Clustering for Mixed-Effects Functional Models in High Dimension," Biometrics, The International Biometric Society, vol. 69(1), pages 31-40, March.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Jeng‐Min Chiou & Pai‐Ling Li, 2007. "Functional clustering and identifying substructures of longitudinal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 679-699, September.
    4. Ma, Ping & Zhong, Wenxuan, 2008. "Penalized Clustering of Large-Scale Functional Data With Multiple Covariates," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 625-636, June.
    5. Nicoleta Serban & Huijing Jiang, 2012. "Multilevel Functional Clustering Analysis," Biometrics, The International Biometric Society, vol. 68(3), pages 805-814, September.
    6. Heard, Nicholas A. & Holmes, Christopher C. & Stephens, David A., 2006. "A Quantitative Study of Gene Regulation Involved in the Immune Response of Anopheline Mosquitoes: An Application of Bayesian Hierarchical Clustering of Curves," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 18-29, March.
    7. Lawrence Hubert & Phipps Arabie, 1985. "Comparing partitions," Journal of Classification, Springer;The Classification Society, vol. 2(1), pages 193-218, December.
    8. Slaets, Leen & Claeskens, Gerda & Hubert, Mia, 2012. "Phase and amplitude-based clustering for functional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2360-2374.
    9. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    10. Mitsunori Kayano & Koji Dozono & Sadanori Konishi, 2010. "Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 211-230, September.
    11. Daniel R. Kowal & David S. Matteson & David Ruppert, 2017. "A Bayesian Multivariate Functional Dynamic Linear Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 733-744, April.
    12. Michael Vogt & Oliver Linton, 2017. "Classification of non-parametric regression functions in longitudinal data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 5-27, January.
    13. Amandine Schmutz & Julien Jacques & Charles Bouveyron & Laurence Chèze & Pauline Martin, 2020. "Clustering multivariate functional data in group-specific functional subspaces," Computational Statistics, Springer, vol. 35(3), pages 1101-1131, September.
    14. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    15. Shubhankar Ray & Bani Mallick, 2006. "Functional clustering by Bayesian wavelet methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 305-332, April.
    16. Wensheng Guo & Mengying You & Jialin Yi & Michel A. Pontari & J. Richard Landis, 2022. "Functional Mixed Effects Clustering with Application to Longitudinal Urologic Chronic Pelvic Pain Syndrome Symptom Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1631-1641, October.
    17. Clifford M. Hurvich & Jeffrey S. Simonoff & Chih‐Ling Tsai, 1998. "Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(2), pages 271-293.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julien Jacques & Cristian Preda, 2014. "Functional data clustering: a survey," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 231-255, September.
    2. Li, Pai-Ling & Chiou, Jeng-Min, 2011. "Identifying cluster number for subspace projected functional data clustering," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2090-2103, June.
    3. Yaeji Lim & Hee-Seok Oh & Ying Kuen Cheung, 2019. "Multiscale Clustering for Functional Data," Journal of Classification, Springer;The Classification Society, vol. 36(2), pages 368-391, July.
    4. Daewon Yang & Taeryon Choi & Eric Lavigne & Yeonseung Chung, 2022. "Non‐parametric Bayesian covariate‐dependent multivariate functional clustering: An application to time‐series data for multiple air pollutants," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1521-1542, November.
    5. Golovkine, Steven & Klutchnikoff, Nicolas & Patilea, Valentin, 2022. "Clustering multivariate functional data using unsupervised binary trees," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    6. Kim, Joonpyo & Oh, Hee-Seok, 2020. "Pseudo-quantile functional data clustering," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    7. Ja‐Yoon Jang & Hee‐Seok Oh & Yaeji Lim & Ying Kuen Cheung, 2021. "Ensemble clustering for step data via binning," Biometrics, The International Biometric Society, vol. 77(1), pages 293-304, March.
    8. Juhyun Park & Jeongyoun Ahn, 2017. "Clustering multivariate functional data with phase variation," Biometrics, The International Biometric Society, vol. 73(1), pages 324-333, March.
    9. Coffey, N. & Hinde, J. & Holian, E., 2014. "Clustering longitudinal profiles using P-splines and mixed effects models applied to time-course gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 14-29.
    10. Vogt, Michael & Linton, Oliver, 2020. "Multiscale clustering of nonparametric regression curves," Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
    11. Zhu, Hanbing & Li, Rui & Zhang, Riquan & Lian, Heng, 2020. "Nonlinear functional canonical correlation analysis via distance covariance," Journal of Multivariate Analysis, Elsevier, vol. 180(C).
    12. Adriano Zanin Zambom & Julian A. A. Collazos & Ronaldo Dias, 2019. "Functional data clustering via hypothesis testing k-means," Computational Statistics, Springer, vol. 34(2), pages 527-549, June.
    13. Li, Yehua & Qiu, Yumou & Xu, Yuhang, 2022. "From multivariate to functional data analysis: Fundamentals, recent developments, and emerging areas," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    14. Jacques, Julien & Preda, Cristian, 2014. "Model-based clustering for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 92-106.
    15. Yifan Zhu & Chongzhi Di & Ying Qing Chen, 2019. "Clustering Functional Data with Application to Electronic Medication Adherence Monitoring in HIV Prevention Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(2), pages 238-261, July.
    16. Alessandro Casa & Andrea Cappozzo & Michael Fop, 2022. "Group-Wise Shrinkage Estimation in Penalized Model-Based Clustering," Journal of Classification, Springer;The Classification Society, vol. 39(3), pages 648-674, November.
    17. Michael Vogt & Oliver Linton, 2015. "Classification of nonparametric regression functions in heterogeneous panels," CeMMAP working papers 06/15, Institute for Fiscal Studies.
    18. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    19. Sakyajit Bhattacharya & Paul McNicholas, 2014. "A LASSO-penalized BIC for mixture model selection," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(1), pages 45-61, March.
    20. Shaikh Mateen & McNicholas Paul D & Desmond Anthony F, 2010. "A Pseudo-EM Algorithm for Clustering Incomplete Longitudinal Data," The International Journal of Biostatistics, De Gruyter, vol. 6(1), pages 1-17, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijds:v:3:y:2024:i:2:p:203-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.