IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v55y2003i4p671-687.html
   My bibliography  Save this article

Selection of smoothing parameters inB-spline nonparametric regression models using information criteria

Author

Listed:
  • Seiya Imoto
  • Sadanori Konishi

Abstract

No abstract is available for this item.

Suggested Citation

  • Seiya Imoto & Sadanori Konishi, 2003. "Selection of smoothing parameters inB-spline nonparametric regression models using information criteria," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 55(4), pages 671-687, December.
  • Handle: RePEc:spr:aistmt:v:55:y:2003:i:4:p:671-687
    DOI: 10.1007/BF02523388
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF02523388
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF02523388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anestis Antoniadis & Irène Gijbels & Mila Nikolova, 2011. "Penalized likelihood regression for generalized linear models with non-quadratic penalties," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 585-615, June.
    2. Kagerer, Kathrin, 2013. "A short introduction to splines in least squares regression analysis," University of Regensburg Working Papers in Business, Economics and Management Information Systems 472, University of Regensburg, Department of Economics.
    3. Hidetoshi Matsui & Toshihiro Misumi, 2015. "Variable selection for varying-coefficient models with the sparse regularization," Computational Statistics, Springer, vol. 30(1), pages 43-55, March.
    4. Mitsunori Kayano & Koji Dozono & Sadanori Konishi, 2010. "Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 211-230, September.
    5. Masao Ueki & Kaoru Fueda, 2010. "Optimal tuning parameter estimation in maximum penalized likelihood method," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(3), pages 413-438, June.
    6. Shohei Tateishi & Sadanori Konishi, 2011. "Nonlinear regression modeling and detecting change points via the relevance vector machine," Computational Statistics, Springer, vol. 26(3), pages 477-490, September.
    7. Tomohiro Ando & Sadanori Konishi, 2009. "Nonlinear logistic discrimination via regularized radial basis functions for classifying high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(2), pages 331-353, June.
    8. Ekheden, Erland & Hössjer, Ola, 2015. "Multivariate time series modeling, estimation and prediction of mortalities," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 156-171.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:55:y:2003:i:4:p:671-687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.