IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v31y2014i3p296-324.html
   My bibliography  Save this article

Functional PCA and Base-Line Logit Models

Author

Listed:
  • Manuel Escabias
  • Ana Aguilera
  • M. Aguilera-Morillo

Abstract

In many statistical applications data are curves measured as functions of a continuous parameter as time. Despite of their functional nature and due to discrete-time observation, these type of data are usually analyzed with multivariate statistical methods that do not take into account the high correlation between observations of a single curve at nearby time points. Functional data analysis methodologies have been developed to solve these type of problems. In order to predict the class membership (multi-category response variable) associated to an observed curve (functional data), a functional generalized logit model is proposed. Base-line category logit formulations will be considered and their estimation based on basis expansions of the sample curves of the functional predictor and parameters. Functional principal component analysis will be used to get an accurate estimation of the functional parameters and to classify sample curves in the categories of the response variable. The good performance of the proposed methodology will be studied by developing an experimental study with simulated and real data. Copyright Classification Society of North America 2014

Suggested Citation

  • Manuel Escabias & Ana Aguilera & M. Aguilera-Morillo, 2014. "Functional PCA and Base-Line Logit Models," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 296-324, October.
  • Handle: RePEc:spr:jclass:v:31:y:2014:i:3:p:296-324
    DOI: 10.1007/s00357-014-9162-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00357-014-9162-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00357-014-9162-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hidetoshi Matsui & Takamitsu Araki & Sadanori Konishi, 2011. "Multiclass Functional Discriminant Analysis and Its Application to Gesture Recognition," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 227-243, July.
    2. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 151-163, September.
    3. Herve Cardot & Robert Faivre & Michel Goulard, 2003. "Functional approaches for predicting land use with the temporal evolution of coarse resolution remote sensing data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 30(10), pages 1185-1199.
    4. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    5. Mariano J. Valderrama & Francisco A. Ocaña & Ana M. Aguilera & Francisco M. Ocaña-Peinado, 2010. "Forecasting Pollen Concentration by a Two-Step Functional Model," Biometrics, The International Biometric Society, vol. 66(2), pages 578-585, June.
    6. Cardot, Hervé & Sarda, Pacal, 2005. "Estimation in generalized linear models for functional data via penalized likelihood," Journal of Multivariate Analysis, Elsevier, vol. 92(1), pages 24-41, January.
    7. Ferraty, F. & Vieu, P., 2003. "Curves discrimination: a nonparametric functional approach," Computational Statistics & Data Analysis, Elsevier, vol. 44(1-2), pages 161-173, October.
    8. Francisco Ocaña & Ana Aguilera & Manuel Escabias, 2007. "Computational considerations in functional principal component analysis," Computational Statistics, Springer, vol. 22(3), pages 449-465, September.
    9. Mitsunori Kayano & Koji Dozono & Sadanori Konishi, 2010. "Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 211-230, September.
    10. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2006. "Using principal components for estimating logistic regression with high-dimensional multicollinear data," Computational Statistics & Data Analysis, Elsevier, vol. 50(8), pages 1905-1924, April.
    11. Gareth M. James & Trevor J. Hastie, 2001. "Functional linear discriminant analysis for irregularly sampled curves," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(3), pages 533-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tengteng Xu & Riquan Zhang & Xiuzhen Zhang, 2023. "Estimation of spatial-functional based-line logit model for multivariate longitudinal data," Computational Statistics, Springer, vol. 38(1), pages 79-99, March.
    2. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    3. Fabrizio Maturo & Antonio Balzanella & Tonio Di Battista, 2019. "Building Statistical Indicators of Equitable and Sustainable Well-Being in a Functional Framework," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(3), pages 449-471, December.
    4. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
    2. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    3. Ana M. Aguilera & Manuel Escabias & Francisco A. Ocaña & Mariano J. Valderrama, 2015. "Functional Wavelet-Based Modelling of Dependence Between Lupus and Stress," Methodology and Computing in Applied Probability, Springer, vol. 17(4), pages 1015-1028, December.
    4. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Discussion of different logistic models with functional data. Application to Systemic Lupus Erythematosus," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 151-163, September.
    5. Ahmed, M.S. & Attouch, M.K. & Dabo-Niang, S., 2018. "Binary functional linear models under choice-based sampling," Econometrics and Statistics, Elsevier, vol. 7(C), pages 134-152.
    6. Shin, Hyejin, 2008. "An extension of Fisher's discriminant analysis for stochastic processes," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1191-1216, July.
    7. Tengteng Xu & Riquan Zhang & Xiuzhen Zhang, 2023. "Estimation of spatial-functional based-line logit model for multivariate longitudinal data," Computational Statistics, Springer, vol. 38(1), pages 79-99, March.
    8. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    9. Mousavi, Seyed Nourollah & Sørensen, Helle, 2017. "Multinomial functional regression with wavelets and LASSO penalization," Econometrics and Statistics, Elsevier, vol. 1(C), pages 150-166.
    10. Escabias, M. & Aguilera, A.M. & Valderrama, M.J., 2007. "Functional PLS logit regression model," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4891-4902, June.
    11. Tian, Tian Siva & James, Gareth M., 2013. "Interpretable dimension reduction for classifying functional data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 282-296.
    12. Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Forecasting binary longitudinal data by a functional PC-ARIMA model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3187-3197, February.
    13. Manuel Febrero-Bande, 2016. "Comments on: Probability enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 35-40, March.
    14. repec:cte:wsrepe:ws120906 is not listed on IDEAS
    15. Fabrizio Maturo & Rosanna Verde, 2023. "Supervised classification of curves via a combined use of functional data analysis and tree-based methods," Computational Statistics, Springer, vol. 38(1), pages 419-459, March.
    16. Andrés Alonso & David Casado & Sara López-Pintado & Juan Romo, 2014. "Robust Functional Supervised Classification for Time Series," Journal of Classification, Springer;The Classification Society, vol. 31(3), pages 325-350, October.
    17. Park, Yeonjoo & Simpson, Douglas G., 2019. "Robust probabilistic classification applicable to irregularly sampled functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 37-49.
    18. Karl Mosler & Pavlo Mozharovskyi, 2017. "Fast DD-classification of functional data," Statistical Papers, Springer, vol. 58(4), pages 1055-1089, December.
    19. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    20. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    21. Chen, Lu-Hung & Jiang, Ci-Ren, 2018. "Sensible functional linear discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 126(C), pages 39-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:31:y:2014:i:3:p:296-324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.