IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v37y2010i1p41-55.html
   My bibliography  Save this article

Bayesian Procrustes analysis with applications to hydrology

Author

Listed:
  • Athanasios Micheas
  • Yuqiang Peng

Abstract

In this paper, we introduce Procrustes analysis in a Bayesian framework, by treating the classic Procrustes regression equation from a Bayesian perspective, while modeling shapes in two dimensions. The Bayesian approach allows us to compute point estimates and credible sets for the full Procrustes fit parameters. The methods are illustrated through an application to radar data from short-term weather forecasts (nowcasts), a very important problem in hydrology and meteorology.

Suggested Citation

  • Athanasios Micheas & Yuqiang Peng, 2010. "Bayesian Procrustes analysis with applications to hydrology," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(1), pages 41-55.
  • Handle: RePEc:taf:japsta:v:37:y:2010:i:1:p:41-55
    DOI: 10.1080/02664760802653560
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760802653560
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760802653560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Athanasios Micheas & Dipak Dey, 2005. "Assessing shape differences in populations of shapes using the complex watson shape distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 32(2), pages 105-116.
    2. Peter J. Green & Kanti V. Mardia, 2006. "Bayesian alignment using hierarchical models, with applications in protein bioinformatics," Biometrika, Biometrika Trust, vol. 93(2), pages 235-254, June.
    3. Micheas, Athanasios C. & Dey, Dipak K., 2005. "Modeling shape distributions and inferences for assessing differences in shapes," Journal of Multivariate Analysis, Elsevier, vol. 92(2), pages 257-280, February.
    4. Xu, Ke & Wikle, Christopher K. & Fox, Neil I., 2005. "A Kernel-Based Spatio-Temporal Dynamical Model for Nowcasting Weather Radar Reflectivities," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1133-1144, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Juan Antonio Balbuena & Raúl Míguez-Lozano & Isabel Blasco-Costa, 2013. "PACo: A Novel Procrustes Application to Cophylogenetic Analysis," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    2. Chiara Brombin & Luigi Salmaso & Lara Fontanella & Luigi Ippoliti, 2015. "Nonparametric combination-based tests in dynamic shape analysis," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 27(4), pages 460-484, December.
    3. Ian L. Dryden & Jonathan D. Hirst & James L. Melville, 2007. "Statistical Analysis of Unlabeled Point Sets: Comparing Molecules in Chemoinformatics," Biometrics, The International Biometric Society, vol. 63(1), pages 237-251, March.
    4. Angela Andreella & Livio Finos, 2022. "Procrustes Analysis for High-Dimensional Data," Psychometrika, Springer;The Psychometric Society, vol. 87(4), pages 1422-1438, December.
    5. Richardson, Robert & Kottas, Athanasios & Sansó, Bruno, 2017. "Flexible integro-difference equation modeling for spatio-temporal data," Computational Statistics & Data Analysis, Elsevier, vol. 109(C), pages 182-198.
    6. John T. Kent, 2014. "Contribution to the Discussion of the Paper Geodesic Monte Carlo on Embedded Manifolds," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(1), pages 10-11, March.
    7. S.M. Najibi & M.R. Faghihi & M. Golalizadeh & S.S. Arab, 2015. "Bayesian alignment of proteins via Delaunay tetrahedralization," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(5), pages 1064-1079, May.
    8. Mitsunori Kayano & Koji Dozono & Sadanori Konishi, 2010. "Functional Cluster Analysis via Orthonormalized Gaussian Basis Expansions and Its Application," Journal of Classification, Springer;The Classification Society, vol. 27(2), pages 211-230, September.
    9. Zahra Barzegar & Firoozeh Rivaz, 2020. "A scalable Bayesian nonparametric model for large spatio-temporal data," Computational Statistics, Springer, vol. 35(1), pages 153-173, March.
    10. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    11. Michael Habeck, 2009. "Generation of three-dimensional random rotations in fitting and matching problems," Computational Statistics, Springer, vol. 24(4), pages 719-731, December.
    12. Angela Andreella & Riccardo Santis & Anna Vesely & Livio Finos, 2023. "Procrustes-based distances for exploring between-matrices similarity," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 867-882, September.
    13. H. Fotouhi & M. Golalizadeh, 2015. "Highly resistant gradient descent algorithm for computing intrinsic mean shape on similarity shape spaces," Statistical Papers, Springer, vol. 56(2), pages 391-410, May.
    14. Ian L. Dryden & Kwang-Rae Kim & Huiling Le, 2019. "Bayesian Linear Size-and-Shape Regression with Applications to Face Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 83-103, February.
    15. Di Noia, Antonio & Mastrantonio, Gianluca & Jona Lasinio, Giovanna, 2024. "Bayesian size-and-shape regression modelling," Statistics & Probability Letters, Elsevier, vol. 204(C).
    16. Ejlali Nasim & Faghihi Mohammad Reza & Sadeghi Mehdi, 2017. "Bayesian comparison of protein structures using partial Procrustes distance," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 16(4), pages 243-257, September.
    17. Alshabani, A.K.S. & Dryden, I.L. & Litton, C.D., 2007. "Partial size-and-shape distributions," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1988-2001, November.
    18. Valdevino Félix de Lima, Wenia & David Costa do Nascimento, Abraão & José Amorim do Amaral, Getúlio, 2021. "Distance-based tests for planar shape," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    19. Kanti Mardia, 2010. "Bayesian analysis for bivariate von Mises distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(3), pages 515-528.
    20. Su, J. & Srivastava, A. & Huffer, F.W., 2013. "Detection, classification and estimation of individual shapes in 2D and 3D point clouds," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 227-241.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:37:y:2010:i:1:p:41-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.