IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0155066.html
   My bibliography  Save this article

An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia

Author

Listed:
  • Darren Kidney
  • Benjamin M Rawson
  • David L Borchers
  • Ben C Stevenson
  • Tiago A Marques
  • Len Thomas

Abstract

Some animal species are hard to see but easy to hear. Standard visual methods for estimating population density for such species are often ineffective or inefficient, but methods based on passive acoustics show more promise. We develop spatially explicit capture-recapture (SECR) methods for territorial vocalising species, in which humans act as an acoustic detector array. We use SECR and estimated bearing data from a single-occasion acoustic survey of a gibbon population in northeastern Cambodia to estimate the density of calling groups. The properties of the estimator are assessed using a simulation study, in which a variety of survey designs are also investigated. We then present a new form of the SECR likelihood for multi-occasion data which accounts for the stochastic availability of animals. In the context of gibbon surveys this allows model-based estimation of the proportion of groups that produce territorial vocalisations on a given day, thereby enabling the density of groups, instead of the density of calling groups, to be estimated. We illustrate the performance of this new estimator by simulation. We show that it is possible to estimate density reliably from human acoustic detections of visually cryptic species using SECR methods. For gibbon surveys we also show that incorporating observers’ estimates of bearings to detected groups substantially improves estimator performance. Using the new form of the SECR likelihood we demonstrate that estimates of availability, in addition to population density and detection function parameters, can be obtained from multi-occasion data, and that the detection function parameters are not confounded with the availability parameter. This acoustic SECR method provides a means of obtaining reliable density estimates for territorial vocalising species. It is also efficient in terms of data requirements since since it only requires routine survey data. We anticipate that the low-tech field requirements will make this method an attractive option in many situations where populations can be surveyed acoustically by humans.

Suggested Citation

  • Darren Kidney & Benjamin M Rawson & David L Borchers & Ben C Stevenson & Tiago A Marques & Len Thomas, 2016. "An Efficient Acoustic Density Estimation Method with Human Detectors Applied to Gibbons in Cambodia," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-16, May.
  • Handle: RePEc:plo:pone00:0155066
    DOI: 10.1371/journal.pone.0155066
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0155066
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0155066&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0155066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Felix T. Petersma & Len Thomas & Aaron M. Thode & Danielle Harris & Tiago A. Marques & Gisela V. Cheoo & Katherine H. Kim, 2024. "Accommodating False Positives Within Acoustic Spatial Capture–Recapture, with Variable Source Levels, Noisy Bearings and an Inhomogeneous Spatial Density," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 471-490, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0155066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.