IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v81y2018i5d10.1007_s00184-018-0655-2.html
   My bibliography  Save this article

Likelihood ratio confidence interval for the abundance under binomial detectability models

Author

Listed:
  • Yang Liu

    (East China Normal University)

  • Yukun Liu

    (East China Normal University)

  • Yan Fan

    (Shanghai University of International Business and Economics)

  • Han Geng

    (East China Normal University)

Abstract

Binomial detectability models are often used to estimate the size or abundance of a finite population in biology, epidemiology, demography and reliability. Special cases include incompletely observed multinomial models, capture–recapture models, and distance sampling models. The most commonly-used confidence interval for the abundance is the Wald-type confidence interval, which is based on the asymptotic normality of a reasonable point estimator of the abundance. However, the Wald-type confidence interval may have poor coverage accuracy and its lower limit may be less than the number of observations. In this paper, we rigorously establish that the likelihood ratio test statistic for the abundance under the binomial detectability models follows the chisquare limiting distribution with one degree of freedom. This provides a solid theoretical justification for the use of the proposed likelihood ratio confidence interval. Our simulations indicate that in comparison to the Wald-type confidence interval, the likelihood ratio confidence interval not only has more accurate coverage rate, but also exhibits more stable performance in a variety of binomial detectability models. The proposed interval is further illustrated through analyzing three real data-sets.

Suggested Citation

  • Yang Liu & Yukun Liu & Yan Fan & Han Geng, 2018. "Likelihood ratio confidence interval for the abundance under binomial detectability models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 81(5), pages 549-568, July.
  • Handle: RePEc:spr:metrik:v:81:y:2018:i:5:d:10.1007_s00184-018-0655-2
    DOI: 10.1007/s00184-018-0655-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-018-0655-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-018-0655-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jakub Stoklosa & Wen-Han Hwang & Sheng-Hai Wu & Richard Huggins, 2011. "Heterogeneous Capture–Recapture Models with Covariates: A Partial Likelihood Approach for Closed Populations," Biometrics, The International Biometric Society, vol. 67(4), pages 1659-1665, December.
    2. D. L. Borchers & B. C. Stevenson & D. Kidney & L. Thomas & T. A. Marques, 2015. "A Unifying Model for Capture-Recapture and Distance Sampling Surveys of Wildlife Populations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 195-204, March.
    3. Yukun Liu & Pengfei Li & Jing Qin, 2017. "Maximum empirical likelihood estimation for abundance in a closed population from capture-recapture data," Biometrika, Biometrika Trust, vol. 104(3), pages 527-543.
    4. Richard Huggins & Wen‐Han Hwang, 2007. "Non‐parametric estimation of population size from capture–recapture data when the capture probability depends on a covariate," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 56(4), pages 429-443, August.
    5. Anne Chao & Wenten Chu & Chiu-Hsieh Hsu, 2000. "Capture–Recapture When Time and Behavioral Response Affect Capture Probabilities," Biometrics, The International Biometric Society, vol. 56(2), pages 427-433, June.
    6. R. M. Fewster & P. E. Jupp, 2009. "Inference on population size in binomial detectability models," Biometrika, Biometrika Trust, vol. 96(4), pages 805-820.
    7. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthew R. Schofield & Richard J. Barker & William A. Link & Heloise Pavanato, 2023. "Estimating population size: The importance of model and estimator choice," Biometrics, The International Biometric Society, vol. 79(4), pages 3803-3817, December.
    2. Yee, Thomas W. & Stoklosa, Jakub & Huggins, Richard M., 2015. "The VGAM Package for Capture-Recapture Data Using the Conditional Likelihood," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 65(i05).
    3. Wen-Han Hwang & Jakub Stoklosa & Ching-Yun Wang, 2022. "Population Size Estimation Using Zero-Truncated Poisson Regression with Measurement Error," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(2), pages 303-320, June.
    4. Yang Liu & Yukun Liu & Pengfei Li & Lin Zhu, 2021. "Maximum likelihood abundance estimation from capture‐recapture data when covariates are missing at random," Biometrics, The International Biometric Society, vol. 77(3), pages 1050-1060, September.
    5. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    6. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    7. Davide Pettenuzzo & Francesco Ravazzolo, 2016. "Optimal Portfolio Choice Under Decision‐Based Model Combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(7), pages 1312-1332, November.
    8. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    9. Hwang, Eunju, 2022. "Prediction intervals of the COVID-19 cases by HAR models with growth rates and vaccination rates in top eight affected countries: Bootstrap improvement," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
    10. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    11. Armantier, Olivier & Treich, Nicolas, 2013. "Eliciting beliefs: Proper scoring rules, incentives, stakes and hedging," European Economic Review, Elsevier, vol. 62(C), pages 17-40.
    12. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    13. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    14. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    15. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.
    16. Warne, Anders, 2023. "DSGE model forecasting: rational expectations vs. adaptive learning," Working Paper Series 2768, European Central Bank.
    17. James Mitchell & Aubrey Poon & Dan Zhu, 2024. "Constructing density forecasts from quantile regressions: Multimodality in macrofinancial dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 790-812, August.
    18. Rafael Frongillo, 2022. "Quantum Information Elicitation," Papers 2203.07469, arXiv.org.
    19. Karimi, Majid & Zaerpour, Nima, 2022. "Put your money where your forecast is: Supply chain collaborative forecasting with cost-function-based prediction markets," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1035-1049.
    20. Peysakhovich, Alexander & Plagborg-Møller, Mikkel, 2012. "A note on proper scoring rules and risk aversion," Economics Letters, Elsevier, vol. 117(1), pages 357-361.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:81:y:2018:i:5:d:10.1007_s00184-018-0655-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.