IDEAS home Printed from https://ideas.repec.org/a/spr/jagbes/v27y2022i3d10.1007_s13253-022-00494-2.html
   My bibliography  Save this article

Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems

Author

Listed:
  • Amira Elayouty

    (University of Glasgow
    Cairo University)

  • Marian Scott

    (University of Glasgow)

  • Claire Miller

    (University of Glasgow)

Abstract

Outgassing of carbon dioxide (CO $$_2$$ 2 ) from river surface waters, estimated using partial pressure of dissolved CO $$_2$$ 2 , has recently been considered an important component of the global carbon budget. However, little is still known about the high-frequency dynamics of CO $$_2$$ 2 emissions in small-order rivers and streams. To analyse such highly dynamic systems, we propose a time-varying functional principal components analysis (FPCA) for non-stationary functional time series (FTS). This time-varying FPCA is performed in the frequency domain to investigate how the variability and auto-covariance structures in a FTS change over time. This methodology, and the associated proposed inference, enables investigation of the changes over time in the variability structure of the diurnal profiles of the partial pressure of CO $$_2$$ 2 and identification of the drivers of those changes. By means of a simulation study, the performance of the time-varying dynamic FPCs is investigated under different scenarios of complete and incomplete FTS. Although the time-varying dynamic FPCA has been applied here to study the daily processes of consuming and producing CO $$_2$$ 2 in a small catchment of the river Dee in Scotland, this methodology can be applied more generally to any dynamic time series.Supplementary materials accompanying this paper appear online.

Suggested Citation

  • Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.
  • Handle: RePEc:spr:jagbes:v:27:y:2022:i:3:d:10.1007_s13253-022-00494-2
    DOI: 10.1007/s13253-022-00494-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13253-022-00494-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13253-022-00494-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Daniel Peña & Victor J. Yohai, 2016. "Generalized Dynamic Principal Components," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1121-1131, July.
    3. Ombao, Hernando & Ringo Ho, Moon-ho, 2006. "Time-dependent frequency domain principal components analysis of multichannel non-stationary signals," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2339-2360, May.
    4. Fangrong Yan & Xiao Lin & Ruosha Li & Xuelin Huang, 2018. "Functional principal components analysis on moving time windows of longitudinal data: dynamic prediction of times to event," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 961-978, August.
    5. Panaretos, Victor M. & Tavakoli, Shahin, 2013. "Cramér–Karhunen–Loève representation and harmonic principal component analysis of functional time series," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2779-2807.
    6. Politis, Dimitris N., 2011. "Higher-Order Accurate, Positive Semidefinite Estimation Of Large-Sample Covariance And Spectral Density Matrices," Econometric Theory, Cambridge University Press, vol. 27(4), pages 703-744, August.
    7. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    8. Clara Happ & Sonja Greven, 2018. "Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 649-659, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    2. Salish, Nazarii & Gleim, Alexander, 2019. "A moment-based notion of time dependence for functional time series," Journal of Econometrics, Elsevier, vol. 212(2), pages 377-392.
    3. Klepsch, J. & Klüppelberg, C. & Wei, T., 2017. "Prediction of functional ARMA processes with an application to traffic data," Econometrics and Statistics, Elsevier, vol. 1(C), pages 128-149.
    4. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    5. Cerovecki, Clément & Hörmann, Siegfried, 2017. "On the CLT for discrete Fourier transforms of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 282-295.
    6. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    7. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    8. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    9. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
    10. van Delft, Anne & Eichler, Michael, 2020. "A note on Herglotz’s theorem for time series on function spaces," Stochastic Processes and their Applications, Elsevier, vol. 130(6), pages 3687-3710.
    11. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
    12. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01821815, HAL.
    13. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    14. van Delft, Anne, 2020. "A note on quadratic forms of stationary functional time series under mild conditions," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4206-4251.
    15. Kokoszka, Piotr & Reimherr, Matthew & Wölfing, Nikolas, 2016. "A randomness test for functional panels," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 37-53.
    16. Berkes, István & Horváth, Lajos & Rice, Gregory, 2016. "On the asymptotic normality of kernel estimators of the long run covariance of functional time series," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 150-175.
    17. Marc Hallin & Siegfried Hörmann & Marco Lippi, 2018. "Optimal dimension reduction for high-dimensional and functional time series," Statistical Inference for Stochastic Processes, Springer, vol. 21(2), pages 385-398, July.
    18. Chenlei Leng & Degui Li & Hanlin Shang & Yingcun Xia, 2024. "Covariance Function Estimation for High-Dimensional Functional Time Series with Dual Factor Structures," Papers 2401.05784, arXiv.org, revised Jan 2024.
    19. Gao, Yuan & Shang, Han Lin & Yang, Yanrong, 2019. "High-dimensional functional time series forecasting: An application to age-specific mortality rates," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 232-243.
    20. Dominique Guegan & Matteo Iacopini, 2018. "Nonparametric forecasting of multivariate probability density functions," Post-Print halshs-01821815, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jagbes:v:27:y:2022:i:3:d:10.1007_s13253-022-00494-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.