IDEAS home Printed from https://ideas.repec.org/a/spr/infosf/v8y2006i1d10.1007_s10796-005-6099-z.html
   My bibliography  Save this article

Statistical Methods for Meta-Analysis of Microarray Data: A Comparative Study

Author

Listed:
  • Pingzhao Hu

    (The Hospital for Sick Children Research Institute)

  • Celia M. T. Greenwood

    (University of Toronto)

  • Joseph Beyene

    (University of Toronto)

Abstract

Systematic integration of microarrays from different sources increases statistical power of detecting differentially expressed genes and allows assessment of heterogeneity. The challenge, however, is in designing and implementing efficient analytic methodologies for combining data generated by different research groups and platforms. The widely used strategy mainly focuses on integrating preprocessed data without having access to the original raw data that yielded the initial results. A main disadvantage of this strategy is that the quality of different data sets may be highly variable, but this information is neglected during the integration. We have recently proposed a quality-weighting strategy to integrate Affymetrix microarrays. The quality measure is a function of the detection p-values, which indicate whether a transcript is reliably detected or not on Affymetrix gene chip. In this study, we compare the proposed quality-weighted strategy with the traditional quality-unweighted strategy, and examine how the quality weights influence two commonly used meta-analysis methods: combining p-values and combining effect size estimates. The methods are compared on a real data set for identifying biomarkers for lung cancer. Our results show that the proposed quality-weighted strategy can lead to larger statistical power for identifying differentially expressed genes when integrating data from Affymetrix microarrays.

Suggested Citation

  • Pingzhao Hu & Celia M. T. Greenwood & Joseph Beyene, 2006. "Statistical Methods for Meta-Analysis of Microarray Data: A Comparative Study," Information Systems Frontiers, Springer, vol. 8(1), pages 9-20, February.
  • Handle: RePEc:spr:infosf:v:8:y:2006:i:1:d:10.1007_s10796-005-6099-z
    DOI: 10.1007/s10796-005-6099-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10796-005-6099-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10796-005-6099-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florian R L Meyer & Heinrich Grausgruber & Claudia Binter & Georg E Mair & Christian Guelly & Claus Vogl & Ralf Steinborn, 2013. "Cross-Platform Microarray Meta-Analysis for the Mouse Jejunum Selects Novel Reference Genes with Highly Uniform Levels of Expression," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-15, May.
    2. Chulhwan Chris Bang, 2015. "Information systems frontiers: Keyword analysis and classification," Information Systems Frontiers, Springer, vol. 17(1), pages 217-237, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    2. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    3. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    4. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    5. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    8. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    10. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    11. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    12. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    13. Erminia Donnarumma & Michael Kohlhaas & Elodie Vimont & Etienne Kornobis & Thibault Chaze & Quentin Giai Gianetto & Mariette Matondo & Maryse Moya-Nilges & Christoph Maack & Timothy Wai, 2022. "Mitochondrial Fission Process 1 controls inner membrane integrity and protects against heart failure," Nature Communications, Nature, vol. 13(1), pages 1-24, December.
    14. J. T. Gene Hwang & Jing Qiu & Zhigen Zhao, 2009. "Empirical Bayes confidence intervals shrinking both means and variances," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 265-285, January.
    15. Long Qu & Dan Nettleton & Jack C. M. Dekkers, 2012. "Improved Estimation of the Noncentrality Parameter Distribution from a Large Number of t-Statistics, with Applications to False Discovery Rate Estimation in Microarray Data Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1178-1187, December.
    16. Tobias Bexte & Nawid Albinger & Ahmad Al Ajami & Philipp Wendel & Leon Buchinger & Alec Gessner & Jamal Alzubi & Vinzenz Särchen & Meike Vogler & Hadeer Mohamed Rasheed & Beate Anahita Jung & Sebastia, 2024. "CRISPR/Cas9 editing of NKG2A improves the efficacy of primary CD33-directed chimeric antigen receptor natural killer cells," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    17. Saori Kashima & Masatoshi Matsumoto & Takahiko Ogawa & Akira Eboshida & Keisuke Takeuchi, 2012. "The Impact of Travel Time on Geographic Distribution of Dialysis Patients," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-8, October.
    18. Sahra Uygun & Cheng Peng & Melissa D Lehti-Shiu & Robert L Last & Shin-Han Shiu, 2016. "Utility and Limitations of Using Gene Expression Data to Identify Functional Associations," PLOS Computational Biology, Public Library of Science, vol. 12(12), pages 1-27, December.
    19. Cherif Ben Hamda & Raphael Sangeda & Liberata Mwita & Ayton Meintjes & Siana Nkya & Sumir Panji & Nicola Mulder & Lamia Guizani-Tabbane & Alia Benkahla & Julie Makani & Kais Ghedira & H3ABioNet Consor, 2018. "A common molecular signature of patients with sickle cell disease revealed by microarray meta-analysis and a genome-wide association study," PLOS ONE, Public Library of Science, vol. 13(7), pages 1-21, July.
    20. Tony Marion & Husni Elbahesh & Paul G Thomas & John P DeVincenzo & Richard Webby & Klaus Schughart, 2016. "Respiratory Mucosal Proteome Quantification in Human Influenza Infections," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:infosf:v:8:y:2006:i:1:d:10.1007_s10796-005-6099-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.