IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v98y2007i4p852-872.html
   My bibliography  Save this article

Hierarchical Bayes variable selection and microarray experiments

Author

Listed:
  • Nott, David J.
  • Yu, Zeming
  • Chan, Eva
  • Cotsapas, Chris
  • Cowley, Mark J.
  • Pulvers, Jeremy
  • Williams, Rohan
  • Little, Peter

Abstract

Hierarchical and empirical Bayes approaches to inference are attractive for data arising from microarray gene expression studies because of their ability to borrow strength across genes in making inferences. Here we focus on the simplest case where we have data from replicated two colour arrays which compare two samples and where we wish to decide which genes are differentially expressed and obtain estimates of operating characteristics such as false discovery rates. The purpose of this paper is to examine the frequentist performance of Bayesian variable selection approaches to this problem for different prior specifications and to examine the effect on inference of commonly used empirical Bayes approximations to hierarchical Bayes procedures. The paper makes three main contributions. First, we describe how the log odds of differential expression can usually be computed analytically in the case where a double tailed exponential prior is used for gene effects rather than a normal prior, which gives an alternative to the commonly used B-statistic for ranking genes in simple comparative experiments. The second contribution of the paper is to compare empirical Bayes procedures for detecting differential expression with hierarchical Bayes methods which account for uncertainty in prior hyperparameters to examine how much is lost in using the commonly employed empirical Bayes approximations. Third, we describe an efficient MCMC scheme for carrying out the computations required for the hierarchical Bayes procedures. Comparisons are made via simulation studies where the simulated data are obtained by fitting models to some real microarray data sets. The results have implications for analysis of microarray data using parametric hierarchical and empirical Bayes methods for more complex experimental designs: generally we find that the empirical Bayes methods work well, which supports their use in the analysis of more complex experiments when a full hierarchical Bayes analysis would impose heavy computational demands.

Suggested Citation

  • Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
  • Handle: RePEc:eee:jmvana:v:98:y:2007:i:4:p:852-872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(06)00168-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ibrahim J. G. & Chen M-H. & Gray R. J., 2002. "Bayesian Models for Gene Expression With DNA Microarray Data," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 88-99, March.
    2. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    3. Göran Kauermann & Paul Eilers, 2004. "Modeling Microarray Data Using a Threshold Mixture Model," Biometrics, The International Biometric Society, vol. 60(2), pages 376-387, June.
    4. Huang, Jian & Wang, Deli & Zhang, Cun-Hui, 2005. "A Two-Way Semilinear Model for Normalization and Analysis of cDNA Microarray Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 814-829, September.
    5. Fan, Jianqing & Peng, Heng & Huang, Tao, 2005. "Semilinear High-Dimensional Model for Normalization of Microarray Data: A Theoretical Analysis and Partial Consistency," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 781-796, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    2. Chen, Song Xi & Qin, Yingli, 2010. "A Two Sample Test for High Dimensional Data with Applications to Gene-set Testing," MPRA Paper 59642, University Library of Munich, Germany.
    3. You, Jinhong & Zhou, Haibo, 2008. "A two-stage approach to semilinear in-slide models," Journal of Multivariate Analysis, Elsevier, vol. 99(8), pages 1610-1634, September.
    4. Liping Zhu & Jinhong You & Qunfang Xu, 2014. "Statistical Inference for Single-index Panel Data Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(3), pages 830-843, September.
    5. Hong, Zhaoping & Lian, Heng, 2012. "BOPA: A Bayesian hierarchical model for outlier expression detection," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4146-4156.
    6. Caffo Brian S & Liu Dongmei & Scharpf Robert B. & Parmigiani Giovanni, 2009. "Likelihood Estimation of Conjugacy Relationships in Linear Models with Applications to High-Throughput Genomics," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-25, May.
    7. Chen, Songxi, 2012. "Two Sample Tests for High Dimensional Covariance Matrices," MPRA Paper 46026, University Library of Munich, Germany.
    8. Fan, Jianqing & Hall, Peter & Yao, Qiwei, 2007. "To How Many Simultaneous Hypothesis Tests Can Normal, Student's t or Bootstrap Calibration Be Applied?," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1282-1288, December.
    9. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    10. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    11. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    12. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    13. Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
    14. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    16. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    17. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    18. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    19. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    20. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:98:y:2007:i:4:p:852-872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.