IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v11y2012i3n8.html
   My bibliography  Save this article

Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model

Author

Listed:
  • Ambroise Jérôme

    (Université catholique de Louvain)

  • Bearzatto Bertrand

    (Université catholique de Louvain)

  • Robert Annie

    (Université catholique de Louvain)

  • Macq Benoit

    (Université catholique de Louvain)

  • Gala Jean-Luc

    (Université catholique de Louvain)

Abstract

Motivation: Assessment of gene expression on spotted microarrays is based on measurement of fluorescence intensity emitted by hybridized spots. Unfortunately, quantifying fluorescence intensity from hybridized spots does not always correctly reflect gene expression level. Low gene expression levels produce low fluorescence intensities which tend to be confounded with the local background while high gene expression levels produce high fluorescence intensities which rapidly reach the saturation level. Most algorithms that combine data acquired at different voltages of the photomultiplier tube (PMT) assume that a change in scanner setting transforms the intensity measurements by a multiplicative constant.Methods and Results: In this paper we introduce a new model of spot foreground intensity which integrates a PMT voltage independent scanner optical bias. This new model is used to implement a ”Combining Multiple Scan using a Two-way ANOVA” (CMS2A) method, which is based on a maximum likelihood estimation of the scanner optical bias. After having computed scanner bias, coefficients of the two-way ANOVA model are used for correcting the saturated spots intensities obtained at high PMT voltage by using their counterpart values at lower PMT voltages. The method was compared to state-of-the-art multiple scan algorithms, using data generated from the MAQC study. CMS2A produced fold-changes that were highly correlated with qPCR fold-changes. As the scanner optical bias is accurately estimated within CMS2A, this method allows also avoiding fold-change compression biases whatever the value of this optical bias.

Suggested Citation

  • Ambroise Jérôme & Bearzatto Bertrand & Robert Annie & Macq Benoit & Gala Jean-Luc, 2012. "Combining Multiple Laser Scans of Spotted Microarrays by Means of a Two-Way ANOVA Model," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-20, February.
  • Handle: RePEc:bpj:sagmbi:v:11:y:2012:i:3:n:8
    DOI: 10.1515/1544-6115.1738
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/1544-6115.1738
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/1544-6115.1738?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta Rashi & Auvinen Petri & Thomas Andrew & Arjas Elja, 2006. "Bayesian Hierarchical Model for Correcting Signal Saturation in Microarrays Using Pixel Intensities," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 5(1), pages 1-20, August.
    2. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    3. García de la Nava Jorge & van Hijum Sacha & Trelles Oswaldo, 2004. "Saturation and Quantization Reduction in Microarray Experiments using Two Scans at Different Sensitivities," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-18, June.
    4. Ambroise, Jerome & Bearzatto, Bertrand & Robert, Annie & Govaerts, Bernadette & Macq, Benoit & Gala, Jean-Luc, 2011. "Impact of the spotted microarray preprocessing method on fold-change compression and variance stability," LIDAM Reprints ISBA 2011054, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Cui Xiangqin & Kerr M. Kathleen & Churchill Gary A., 2003. "Transformations for cDNA Microarray Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 2(1), pages 1-22, June.
    6. Huber Wolfgang & von Heydebreck Anja & Sueltmann Holger & Poustka Annemarie & Vingron Martin, 2003. "Parameter estimation for the calibration and variance stabilization of microarray data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 2(1), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelmansky Diana M. & Martínez Elena J. & Leiva Víctor, 2013. "A new variance stabilizing transformation for gene expression data analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(6), pages 653-666, December.
    2. Lama, Nicola & Boracchi, Patrizia & Biganzoli, Elia, 2009. "Exploration of distributional models for a novel intensity-dependent normalization procedure in censored gene expression data," Computational Statistics & Data Analysis, Elsevier, vol. 53(5), pages 1906-1922, March.
    3. Aaron C Ericsson & J Wade Davis & William Spollen & Nathan Bivens & Scott Givan & Catherine E Hagan & Mark McIntosh & Craig L Franklin, 2015. "Effects of Vendor and Genetic Background on the Composition of the Fecal Microbiota of Inbred Mice," PLOS ONE, Public Library of Science, vol. 10(2), pages 1-19, February.
    4. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    5. Xiaohong Li & Guy N Brock & Eric C Rouchka & Nigel G F Cooper & Dongfeng Wu & Timothy E O’Toole & Ryan S Gill & Abdallah M Eteleeb & Liz O’Brien & Shesh N Rai, 2017. "A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-22, May.
    6. Kerr Kathleen F., 2012. "Optimality Criteria for the Design of 2-Color Microarray Studies," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-9, January.
    7. J. McClatchy & R. Strogantsev & E. Wolfe & H. Y. Lin & M. Mohammadhosseini & B. A. Davis & C. Eden & D. Goldman & W. H. Fleming & P. Conley & G. Wu & L. Cimmino & H. Mohammed & A. Agarwal, 2023. "Clonal hematopoiesis related TET2 loss-of-function impedes IL1β-mediated epigenetic reprogramming in hematopoietic stem and progenitor cells," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Alexandra Gyurdieva & Stefan Zajic & Ya-Fang Chang & E. Andres Houseman & Shan Zhong & Jaegil Kim & Michael Nathenson & Thomas Faitg & Mary Woessner & David C. Turner & Aisha N. Hasan & John Glod & Ro, 2022. "Biomarker correlates with response to NY-ESO-1 TCR T cells in patients with synovial sarcoma," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    9. Sora Yoon & Seon-Young Kim & Dougu Nam, 2016. "Improving Gene-Set Enrichment Analysis of RNA-Seq Data with Small Replicates," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-16, November.
    10. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    11. Sinan Xiong & Jianbiao Zhou & Tze King Tan & Tae-Hoon Chung & Tuan Zea Tan & Sabrina Hui-Min Toh & Nicole Xin Ning Tang & Yunlu Jia & Yi Xiang See & Melissa Jane Fullwood & Takaomi Sanda & Wee-Joo Chn, 2024. "Super enhancer acquisition drives expression of oncogenic PPP1R15B that regulates protein homeostasis in multiple myeloma," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    12. Chaofeng Yuan & Wensheng Zhu & Xuming He & Jianhua Guo, 2019. "A mixture factor model with applications to microarray data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 60-76, March.
    13. Nan Li & Matthew N. McCall & Zhijin Wu, 2017. "Establishing Informative Prior for Gene Expression Variance from Public Databases," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 160-177, June.
    14. Brian Caffo & Liu Dongmei & Giovanni Parmigiani, 2004. "Power Conjugate Multilevel Models with Applications to Genomics," Johns Hopkins University Dept. of Biostatistics Working Paper Series 1062, Berkeley Electronic Press.
    15. Nott, David J. & Yu, Zeming & Chan, Eva & Cotsapas, Chris & Cowley, Mark J. & Pulvers, Jeremy & Williams, Rohan & Little, Peter, 2007. "Hierarchical Bayes variable selection and microarray experiments," Journal of Multivariate Analysis, Elsevier, vol. 98(4), pages 852-872, April.
    16. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    17. Qianxing Mo & Faming Liang, 2010. "Bayesian Modeling of ChIP-chip Data Through a High-Order Ising Model," Biometrics, The International Biometric Society, vol. 66(4), pages 1284-1294, December.
    18. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    19. Alexander Kaever & Manuel Landesfeind & Kirstin Feussner & Burkhard Morgenstern & Ivo Feussner & Peter Meinicke, 2014. "Meta-Analysis of Pathway Enrichment: Combining Independent and Dependent Omics Data Sets," PLOS ONE, Public Library of Science, vol. 9(2), pages 1-12, February.
    20. Iqbal Mahmud & Guimei Tian & Jia Wang & Tarun E. Hutchinson & Brandon J. Kim & Nikee Awasthee & Seth Hale & Chengcheng Meng & Allison Moore & Liming Zhao & Jessica E. Lewis & Aaron Waddell & Shangtao , 2023. "DAXX drives de novo lipogenesis and contributes to tumorigenesis," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:11:y:2012:i:3:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.